Solve for a (complex solution)
\left\{\begin{matrix}a=-\frac{k\left(4x+1\right)}{\left(k-1\right)x^{2}}\text{, }&k\neq 0\text{ and }x\neq 0\text{ and }k\neq 1\\a\in \mathrm{C}\text{, }&k=1\text{ and }x=-\frac{1}{4}\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=-\frac{k\left(4x+1\right)}{\left(k-1\right)x^{2}}\text{, }&k\neq 0\text{ and }x\neq 0\text{ and }k\neq 1\\a\in \mathrm{R}\text{, }&k=1\text{ and }x=-\frac{1}{4}\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\frac{ax^{2}}{ax^{2}+4x+1}\text{, }&x\neq 0\text{ and }a\neq 0\text{ and }a\neq -\frac{4x+1}{x^{2}}\\k\neq 0\text{, }&x=-\frac{1}{4}\text{ and }a=0\end{matrix}\right.
Graph
Share
Copied to clipboard
a\left(k-1\right)x^{2}+4xk+k=0
Multiply both sides of the equation by k.
\left(ak-a\right)x^{2}+4xk+k=0
Use the distributive property to multiply a by k-1.
akx^{2}-ax^{2}+4xk+k=0
Use the distributive property to multiply ak-a by x^{2}.
akx^{2}-ax^{2}+k=-4xk
Subtract 4xk from both sides. Anything subtracted from zero gives its negation.
akx^{2}-ax^{2}=-4xk-k
Subtract k from both sides.
\left(kx^{2}-x^{2}\right)a=-4xk-k
Combine all terms containing a.
\left(kx^{2}-x^{2}\right)a=-4kx-k
The equation is in standard form.
\frac{\left(kx^{2}-x^{2}\right)a}{kx^{2}-x^{2}}=-\frac{k\left(4x+1\right)}{kx^{2}-x^{2}}
Divide both sides by -x^{2}+kx^{2}.
a=-\frac{k\left(4x+1\right)}{kx^{2}-x^{2}}
Dividing by -x^{2}+kx^{2} undoes the multiplication by -x^{2}+kx^{2}.
a=-\frac{k\left(4x+1\right)}{\left(k-1\right)x^{2}}
Divide -k\left(1+4x\right) by -x^{2}+kx^{2}.
a\left(k-1\right)x^{2}+4xk+k=0
Multiply both sides of the equation by k.
\left(ak-a\right)x^{2}+4xk+k=0
Use the distributive property to multiply a by k-1.
akx^{2}-ax^{2}+4xk+k=0
Use the distributive property to multiply ak-a by x^{2}.
akx^{2}-ax^{2}+k=-4xk
Subtract 4xk from both sides. Anything subtracted from zero gives its negation.
akx^{2}-ax^{2}=-4xk-k
Subtract k from both sides.
\left(kx^{2}-x^{2}\right)a=-4xk-k
Combine all terms containing a.
\left(kx^{2}-x^{2}\right)a=-4kx-k
The equation is in standard form.
\frac{\left(kx^{2}-x^{2}\right)a}{kx^{2}-x^{2}}=-\frac{k\left(4x+1\right)}{kx^{2}-x^{2}}
Divide both sides by kx^{2}-x^{2}.
a=-\frac{k\left(4x+1\right)}{kx^{2}-x^{2}}
Dividing by kx^{2}-x^{2} undoes the multiplication by kx^{2}-x^{2}.
a=-\frac{k\left(4x+1\right)}{\left(k-1\right)x^{2}}
Divide -k\left(1+4x\right) by kx^{2}-x^{2}.
a\left(k-1\right)x^{2}+4xk+k=0
Variable k cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by k.
\left(ak-a\right)x^{2}+4xk+k=0
Use the distributive property to multiply a by k-1.
akx^{2}-ax^{2}+4xk+k=0
Use the distributive property to multiply ak-a by x^{2}.
akx^{2}+4xk+k=ax^{2}
Add ax^{2} to both sides. Anything plus zero gives itself.
\left(ax^{2}+4x+1\right)k=ax^{2}
Combine all terms containing k.
\frac{\left(ax^{2}+4x+1\right)k}{ax^{2}+4x+1}=\frac{ax^{2}}{ax^{2}+4x+1}
Divide both sides by 4x+1+ax^{2}.
k=\frac{ax^{2}}{ax^{2}+4x+1}
Dividing by 4x+1+ax^{2} undoes the multiplication by 4x+1+ax^{2}.
k=\frac{ax^{2}}{ax^{2}+4x+1}\text{, }k\neq 0
Variable k cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}