\frac { a } { c + d x } = \frac { e } { p + g x }
Solve for a
a=\frac{e\left(dx+c\right)}{gx+p}
c\neq -dx\text{ and }p\neq -gx
Solve for c
c=\frac{agx-edx+ap}{e}
p\neq -gx\text{ and }a\neq 0
Graph
Share
Copied to clipboard
\left(gx+p\right)a=\left(dx+c\right)e
Multiply both sides of the equation by \left(dx+c\right)\left(gx+p\right), the least common multiple of c+dx,p+gx.
gxa+pa=\left(dx+c\right)e
Use the distributive property to multiply gx+p by a.
gxa+pa=dxe+ce
Use the distributive property to multiply dx+c by e.
\left(gx+p\right)a=dxe+ce
Combine all terms containing a.
\left(gx+p\right)a=edx+ec
The equation is in standard form.
\frac{\left(gx+p\right)a}{gx+p}=\frac{e\left(dx+c\right)}{gx+p}
Divide both sides by p+gx.
a=\frac{e\left(dx+c\right)}{gx+p}
Dividing by p+gx undoes the multiplication by p+gx.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}