Solve for a
a=\frac{b\left(b+ck\right)}{c}
b\neq 0\text{ and }c\neq 0
Solve for b (complex solution)
\left\{\begin{matrix}b=\frac{\sqrt{4ac+\left(ck\right)^{2}}-ck}{2}\text{, }&\left(a\neq 0\text{ and }c\neq 0\right)\text{ or }\left(k\neq 0\text{ and }arg(ck)\geq \pi \text{ and }c\neq 0\right)\\b=\frac{-\sqrt{4ac+\left(ck\right)^{2}}-ck}{2}\text{, }&\left(a\neq 0\text{ and }c\neq 0\right)\text{ or }\left(arg(ck)<\pi \text{ and }k\neq 0\text{ and }c\neq 0\right)\end{matrix}\right.
Share
Copied to clipboard
ca-bb=kbc
Multiply both sides of the equation by bc, the least common multiple of b,c.
ca-b^{2}=kbc
Multiply b and b to get b^{2}.
ca=kbc+b^{2}
Add b^{2} to both sides.
ca=b^{2}+bck
The equation is in standard form.
\frac{ca}{c}=\frac{b\left(b+ck\right)}{c}
Divide both sides by c.
a=\frac{b\left(b+ck\right)}{c}
Dividing by c undoes the multiplication by c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}