\frac { a } { b } = \frac { 38 } { 11,4 }
Solve for a
a=\frac{10b}{3}
b\neq 0
Solve for b
b=\frac{3a}{10}
a\neq 0
Share
Copied to clipboard
a=b\times \frac{38}{11,4}
Multiply both sides of the equation by b.
a=b\times \frac{380}{114}
Expand \frac{38}{11,4} by multiplying both numerator and the denominator by 10.
a=b\times \frac{10}{3}
Reduce the fraction \frac{380}{114} to lowest terms by extracting and canceling out 38.
a=b\times \frac{38}{11,4}
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b.
a=b\times \frac{380}{114}
Expand \frac{38}{11,4} by multiplying both numerator and the denominator by 10.
a=b\times \frac{10}{3}
Reduce the fraction \frac{380}{114} to lowest terms by extracting and canceling out 38.
b\times \frac{10}{3}=a
Swap sides so that all variable terms are on the left hand side.
\frac{10}{3}b=a
The equation is in standard form.
\frac{\frac{10}{3}b}{\frac{10}{3}}=\frac{a}{\frac{10}{3}}
Divide both sides of the equation by \frac{10}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
b=\frac{a}{\frac{10}{3}}
Dividing by \frac{10}{3} undoes the multiplication by \frac{10}{3}.
b=\frac{3a}{10}
Divide a by \frac{10}{3} by multiplying a by the reciprocal of \frac{10}{3}.
b=\frac{3a}{10}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}