Solve for a
a=-2b\left(b-2\right)
b\neq 0
Solve for b
\left\{\begin{matrix}b=-\frac{\sqrt{4-2a}}{2}+1\text{, }&a\neq 0\text{ and }a\leq 2\\b=\frac{\sqrt{4-2a}}{2}+1\text{, }&a\leq 2\end{matrix}\right.
Share
Copied to clipboard
2a+b\times 4b=8b
Multiply both sides of the equation by 2b, the least common multiple of b,2.
2a+b^{2}\times 4=8b
Multiply b and b to get b^{2}.
2a=8b-b^{2}\times 4
Subtract b^{2}\times 4 from both sides.
2a=8b-4b^{2}
Multiply -1 and 4 to get -4.
\frac{2a}{2}=\frac{4b\left(2-b\right)}{2}
Divide both sides by 2.
a=\frac{4b\left(2-b\right)}{2}
Dividing by 2 undoes the multiplication by 2.
a=2b\left(2-b\right)
Divide 4b\left(2-b\right) by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}