Evaluate
\frac{a^{2}-6a-18}{a\left(a^{2}-9\right)}
Differentiate w.r.t. a
\frac{-a^{4}+12a^{3}+45a^{2}-162}{\left(a\left(a^{2}-9\right)\right)^{2}}
Quiz
Polynomial
5 problems similar to:
\frac { a } { a ^ { 2 } - 9 } - \frac { 6 } { a ^ { 2 } - 3 a }
Share
Copied to clipboard
\frac{a}{\left(a-3\right)\left(a+3\right)}-\frac{6}{a\left(a-3\right)}
Factor a^{2}-9. Factor a^{2}-3a.
\frac{aa}{a\left(a-3\right)\left(a+3\right)}-\frac{6\left(a+3\right)}{a\left(a-3\right)\left(a+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-3\right)\left(a+3\right) and a\left(a-3\right) is a\left(a-3\right)\left(a+3\right). Multiply \frac{a}{\left(a-3\right)\left(a+3\right)} times \frac{a}{a}. Multiply \frac{6}{a\left(a-3\right)} times \frac{a+3}{a+3}.
\frac{aa-6\left(a+3\right)}{a\left(a-3\right)\left(a+3\right)}
Since \frac{aa}{a\left(a-3\right)\left(a+3\right)} and \frac{6\left(a+3\right)}{a\left(a-3\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-6a-18}{a\left(a-3\right)\left(a+3\right)}
Do the multiplications in aa-6\left(a+3\right).
\frac{a^{2}-6a-18}{a^{3}-9a}
Expand a\left(a-3\right)\left(a+3\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}