Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{a}{\left(a-2\right)\left(a+2\right)}+\frac{2}{\left(a-2\right)\left(-a-2\right)}
Factor a^{2}-4. Factor 4-a^{2}.
\frac{a}{\left(a-2\right)\left(a+2\right)}+\frac{2\left(-1\right)}{\left(a-2\right)\left(a+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)\left(a+2\right) and \left(a-2\right)\left(-a-2\right) is \left(a-2\right)\left(a+2\right). Multiply \frac{2}{\left(a-2\right)\left(-a-2\right)} times \frac{-1}{-1}.
\frac{a+2\left(-1\right)}{\left(a-2\right)\left(a+2\right)}
Since \frac{a}{\left(a-2\right)\left(a+2\right)} and \frac{2\left(-1\right)}{\left(a-2\right)\left(a+2\right)} have the same denominator, add them by adding their numerators.
\frac{a-2}{\left(a-2\right)\left(a+2\right)}
Do the multiplications in a+2\left(-1\right).
\frac{1}{a+2}
Cancel out a-2 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a}{\left(a-2\right)\left(a+2\right)}+\frac{2}{\left(a-2\right)\left(-a-2\right)})
Factor a^{2}-4. Factor 4-a^{2}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a}{\left(a-2\right)\left(a+2\right)}+\frac{2\left(-1\right)}{\left(a-2\right)\left(a+2\right)})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)\left(a+2\right) and \left(a-2\right)\left(-a-2\right) is \left(a-2\right)\left(a+2\right). Multiply \frac{2}{\left(a-2\right)\left(-a-2\right)} times \frac{-1}{-1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a+2\left(-1\right)}{\left(a-2\right)\left(a+2\right)})
Since \frac{a}{\left(a-2\right)\left(a+2\right)} and \frac{2\left(-1\right)}{\left(a-2\right)\left(a+2\right)} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a-2}{\left(a-2\right)\left(a+2\right)})
Do the multiplications in a+2\left(-1\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a+2})
Cancel out a-2 in both numerator and denominator.
-\left(a^{1}+2\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}a}(a^{1}+2)
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(a^{1}+2\right)^{-2}a^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-a^{0}\left(a^{1}+2\right)^{-2}
Simplify.
-a^{0}\left(a+2\right)^{-2}
For any term t, t^{1}=t.
-\left(a+2\right)^{-2}
For any term t except 0, t^{0}=1.