Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{a}{\left(a-1\right)\left(a+2\right)}+\frac{2}{\left(a-6\right)\left(a-1\right)}
Factor a^{2}+a-2. Factor a^{2}-7a+6.
\frac{a\left(a-6\right)}{\left(a-6\right)\left(a-1\right)\left(a+2\right)}+\frac{2\left(a+2\right)}{\left(a-6\right)\left(a-1\right)\left(a+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(a+2\right) and \left(a-6\right)\left(a-1\right) is \left(a-6\right)\left(a-1\right)\left(a+2\right). Multiply \frac{a}{\left(a-1\right)\left(a+2\right)} times \frac{a-6}{a-6}. Multiply \frac{2}{\left(a-6\right)\left(a-1\right)} times \frac{a+2}{a+2}.
\frac{a\left(a-6\right)+2\left(a+2\right)}{\left(a-6\right)\left(a-1\right)\left(a+2\right)}
Since \frac{a\left(a-6\right)}{\left(a-6\right)\left(a-1\right)\left(a+2\right)} and \frac{2\left(a+2\right)}{\left(a-6\right)\left(a-1\right)\left(a+2\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}-6a+2a+4}{\left(a-6\right)\left(a-1\right)\left(a+2\right)}
Do the multiplications in a\left(a-6\right)+2\left(a+2\right).
\frac{a^{2}-4a+4}{\left(a-6\right)\left(a-1\right)\left(a+2\right)}
Combine like terms in a^{2}-6a+2a+4.
\frac{a^{2}-4a+4}{a^{3}-5a^{2}-8a+12}
Expand \left(a-6\right)\left(a-1\right)\left(a+2\right).