Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{a\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{a\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{2a^{2}}{4-a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+2 and a-2 is \left(a-2\right)\left(a+2\right). Multiply \frac{a}{a+2} times \frac{a-2}{a-2}. Multiply \frac{a}{a-2} times \frac{a+2}{a+2}.
\frac{a\left(a-2\right)-a\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}-\frac{2a^{2}}{4-a^{2}}
Since \frac{a\left(a-2\right)}{\left(a-2\right)\left(a+2\right)} and \frac{a\left(a+2\right)}{\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-2a-a^{2}-2a}{\left(a-2\right)\left(a+2\right)}-\frac{2a^{2}}{4-a^{2}}
Do the multiplications in a\left(a-2\right)-a\left(a+2\right).
\frac{-4a}{\left(a-2\right)\left(a+2\right)}-\frac{2a^{2}}{4-a^{2}}
Combine like terms in a^{2}-2a-a^{2}-2a.
\frac{-4a}{\left(a-2\right)\left(a+2\right)}-\frac{2a^{2}}{\left(a-2\right)\left(-a-2\right)}
Factor 4-a^{2}.
\frac{-4a}{\left(a-2\right)\left(a+2\right)}-\frac{-2a^{2}}{\left(a-2\right)\left(a+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)\left(a+2\right) and \left(a-2\right)\left(-a-2\right) is \left(a-2\right)\left(a+2\right). Multiply \frac{2a^{2}}{\left(a-2\right)\left(-a-2\right)} times \frac{-1}{-1}.
\frac{-4a-\left(-2a^{2}\right)}{\left(a-2\right)\left(a+2\right)}
Since \frac{-4a}{\left(a-2\right)\left(a+2\right)} and \frac{-2a^{2}}{\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-4a+2a^{2}}{\left(a-2\right)\left(a+2\right)}
Do the multiplications in -4a-\left(-2a^{2}\right).
\frac{2a\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}
Factor the expressions that are not already factored in \frac{-4a+2a^{2}}{\left(a-2\right)\left(a+2\right)}.
\frac{2a}{a+2}
Cancel out a-2 in both numerator and denominator.