Solve for a
a=\frac{60}{\left(b-10\right)\left(b-6\right)}
b\neq 6\text{ and }b\neq 10
Solve for b (complex solution)
b=-\frac{2\sqrt{a^{2}+15a}}{a}+8
b=\frac{2\sqrt{a^{2}+15a}}{a}+8\text{, }a\neq 0
Solve for b
\left\{\begin{matrix}b=-2\sqrt{1+\frac{15}{a}}+8\text{; }b=2\sqrt{1+\frac{15}{a}}+8\text{, }&a>0\\b=-\frac{2\sqrt{a^{2}+15a}}{a}+8\text{; }b=\frac{2\sqrt{a^{2}+15a}}{a}+8\text{, }&a\leq -15\end{matrix}\right.
Share
Copied to clipboard
5\left(b-10\right)\left(b-6\right)a-\left(300-30b\right)=3\left(b-10\right)\left(b-6\right)a-\left(180-30b\right)
Multiply both sides of the equation by 30\left(b-10\right)\left(b-6\right), the least common multiple of 6,6-b,10,10-b.
\left(5b-50\right)\left(b-6\right)a-\left(300-30b\right)=3\left(b-10\right)\left(b-6\right)a-\left(180-30b\right)
Use the distributive property to multiply 5 by b-10.
\left(5b^{2}-80b+300\right)a-\left(300-30b\right)=3\left(b-10\right)\left(b-6\right)a-\left(180-30b\right)
Use the distributive property to multiply 5b-50 by b-6 and combine like terms.
5b^{2}a-80ba+300a-\left(300-30b\right)=3\left(b-10\right)\left(b-6\right)a-\left(180-30b\right)
Use the distributive property to multiply 5b^{2}-80b+300 by a.
5b^{2}a-80ba+300a-300+30b=3\left(b-10\right)\left(b-6\right)a-\left(180-30b\right)
To find the opposite of 300-30b, find the opposite of each term.
5b^{2}a-80ba+300a-300+30b=\left(3b-30\right)\left(b-6\right)a-\left(180-30b\right)
Use the distributive property to multiply 3 by b-10.
5b^{2}a-80ba+300a-300+30b=\left(3b^{2}-48b+180\right)a-\left(180-30b\right)
Use the distributive property to multiply 3b-30 by b-6 and combine like terms.
5b^{2}a-80ba+300a-300+30b=3b^{2}a-48ba+180a-\left(180-30b\right)
Use the distributive property to multiply 3b^{2}-48b+180 by a.
5b^{2}a-80ba+300a-300+30b=3b^{2}a-48ba+180a-180+30b
To find the opposite of 180-30b, find the opposite of each term.
5b^{2}a-80ba+300a-300+30b-3b^{2}a=-48ba+180a-180+30b
Subtract 3b^{2}a from both sides.
2b^{2}a-80ba+300a-300+30b=-48ba+180a-180+30b
Combine 5b^{2}a and -3b^{2}a to get 2b^{2}a.
2b^{2}a-80ba+300a-300+30b+48ba=180a-180+30b
Add 48ba to both sides.
2b^{2}a-32ba+300a-300+30b=180a-180+30b
Combine -80ba and 48ba to get -32ba.
2b^{2}a-32ba+300a-300+30b-180a=-180+30b
Subtract 180a from both sides.
2b^{2}a-32ba+120a-300+30b=-180+30b
Combine 300a and -180a to get 120a.
2b^{2}a-32ba+120a+30b=-180+30b+300
Add 300 to both sides.
2b^{2}a-32ba+120a+30b=120+30b
Add -180 and 300 to get 120.
2b^{2}a-32ba+120a=120+30b-30b
Subtract 30b from both sides.
2b^{2}a-32ba+120a=120
Combine 30b and -30b to get 0.
\left(2b^{2}-32b+120\right)a=120
Combine all terms containing a.
\frac{\left(2b^{2}-32b+120\right)a}{2b^{2}-32b+120}=\frac{120}{2b^{2}-32b+120}
Divide both sides by 2b^{2}-32b+120.
a=\frac{120}{2b^{2}-32b+120}
Dividing by 2b^{2}-32b+120 undoes the multiplication by 2b^{2}-32b+120.
a=\frac{60}{\left(b-10\right)\left(b-6\right)}
Divide 120 by 2b^{2}-32b+120.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}