Solve for x
x=\frac{a}{36}+\frac{36}{a}
a\neq 0
Solve for a (complex solution)
a=18\left(\sqrt{x^{2}-4}+x\right)
a=18\left(-\sqrt{x^{2}-4}+x\right)
Solve for a
a=18\left(\sqrt{x^{2}-4}+x\right)
a=18\left(-\sqrt{x^{2}-4}+x\right)\text{, }|x|\geq 2
Graph
Share
Copied to clipboard
aa+36\times 36=x\times 36a
Multiply both sides of the equation by 36a, the least common multiple of 36,a.
a^{2}+36\times 36=x\times 36a
Multiply a and a to get a^{2}.
a^{2}+1296=x\times 36a
Multiply 36 and 36 to get 1296.
x\times 36a=a^{2}+1296
Swap sides so that all variable terms are on the left hand side.
36ax=a^{2}+1296
The equation is in standard form.
\frac{36ax}{36a}=\frac{a^{2}+1296}{36a}
Divide both sides by 36a.
x=\frac{a^{2}+1296}{36a}
Dividing by 36a undoes the multiplication by 36a.
x=\frac{a}{36}+\frac{36}{a}
Divide a^{2}+1296 by 36a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}