Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{3bx^{2}}{1-3x^{2}}\text{, }&x\neq -\frac{\sqrt{3}}{3}\text{ and }x\neq \frac{\sqrt{3}}{3}\\a\in \mathrm{C}\text{, }&\left(x=\frac{\sqrt{3}}{3}\text{ or }x=-\frac{\sqrt{3}}{3}\right)\text{ and }b=0\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}b=-a+\frac{a}{3x^{2}}\text{, }&x\neq 0\\b\in \mathrm{C}\text{, }&a=0\text{ and }x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{3bx^{2}}{1-3x^{2}}\text{, }&|x|\neq \frac{\sqrt{3}}{3}\\a\in \mathrm{R}\text{, }&b=0\text{ and }|x|=\frac{\sqrt{3}}{3}\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-a+\frac{a}{3x^{2}}\text{, }&x\neq 0\\b\in \mathrm{R}\text{, }&a=0\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
10a=6x\times 5\left(a+b\right)x
Multiply both sides of the equation by 30, the least common multiple of 3,5,2.
10a=6x^{2}\times 5\left(a+b\right)
Multiply x and x to get x^{2}.
10a=30x^{2}\left(a+b\right)
Multiply 6 and 5 to get 30.
10a=30x^{2}a+30x^{2}b
Use the distributive property to multiply 30x^{2} by a+b.
10a-30x^{2}a=30x^{2}b
Subtract 30x^{2}a from both sides.
\left(10-30x^{2}\right)a=30x^{2}b
Combine all terms containing a.
\left(10-30x^{2}\right)a=30bx^{2}
The equation is in standard form.
\frac{\left(10-30x^{2}\right)a}{10-30x^{2}}=\frac{30bx^{2}}{10-30x^{2}}
Divide both sides by 10-30x^{2}.
a=\frac{30bx^{2}}{10-30x^{2}}
Dividing by 10-30x^{2} undoes the multiplication by 10-30x^{2}.
a=\frac{3bx^{2}}{1-3x^{2}}
Divide 30x^{2}b by 10-30x^{2}.
10a=6x\times 5\left(a+b\right)x
Multiply both sides of the equation by 30, the least common multiple of 3,5,2.
10a=6x^{2}\times 5\left(a+b\right)
Multiply x and x to get x^{2}.
10a=30x^{2}\left(a+b\right)
Multiply 6 and 5 to get 30.
10a=30x^{2}a+30x^{2}b
Use the distributive property to multiply 30x^{2} by a+b.
30x^{2}a+30x^{2}b=10a
Swap sides so that all variable terms are on the left hand side.
30x^{2}b=10a-30x^{2}a
Subtract 30x^{2}a from both sides.
30x^{2}b=10a-30ax^{2}
The equation is in standard form.
\frac{30x^{2}b}{30x^{2}}=\frac{10a\left(1-3x^{2}\right)}{30x^{2}}
Divide both sides by 30x^{2}.
b=\frac{10a\left(1-3x^{2}\right)}{30x^{2}}
Dividing by 30x^{2} undoes the multiplication by 30x^{2}.
b=-a+\frac{a}{3x^{2}}
Divide 10a\left(1-3x^{2}\right) by 30x^{2}.
10a=6x\times 5\left(a+b\right)x
Multiply both sides of the equation by 30, the least common multiple of 3,5,2.
10a=6x^{2}\times 5\left(a+b\right)
Multiply x and x to get x^{2}.
10a=30x^{2}\left(a+b\right)
Multiply 6 and 5 to get 30.
10a=30x^{2}a+30x^{2}b
Use the distributive property to multiply 30x^{2} by a+b.
10a-30x^{2}a=30x^{2}b
Subtract 30x^{2}a from both sides.
\left(10-30x^{2}\right)a=30x^{2}b
Combine all terms containing a.
\left(10-30x^{2}\right)a=30bx^{2}
The equation is in standard form.
\frac{\left(10-30x^{2}\right)a}{10-30x^{2}}=\frac{30bx^{2}}{10-30x^{2}}
Divide both sides by 10-30x^{2}.
a=\frac{30bx^{2}}{10-30x^{2}}
Dividing by 10-30x^{2} undoes the multiplication by 10-30x^{2}.
a=\frac{3bx^{2}}{1-3x^{2}}
Divide 30x^{2}b by 10-30x^{2}.
10a=6x\times 5\left(a+b\right)x
Multiply both sides of the equation by 30, the least common multiple of 3,5,2.
10a=6x^{2}\times 5\left(a+b\right)
Multiply x and x to get x^{2}.
10a=30x^{2}\left(a+b\right)
Multiply 6 and 5 to get 30.
10a=30x^{2}a+30x^{2}b
Use the distributive property to multiply 30x^{2} by a+b.
30x^{2}a+30x^{2}b=10a
Swap sides so that all variable terms are on the left hand side.
30x^{2}b=10a-30x^{2}a
Subtract 30x^{2}a from both sides.
30x^{2}b=10a-30ax^{2}
The equation is in standard form.
\frac{30x^{2}b}{30x^{2}}=\frac{10a\left(1-3x^{2}\right)}{30x^{2}}
Divide both sides by 30x^{2}.
b=\frac{10a\left(1-3x^{2}\right)}{30x^{2}}
Dividing by 30x^{2} undoes the multiplication by 30x^{2}.
b=-a+\frac{a}{3x^{2}}
Divide 10a\left(1-3x^{2}\right) by 30x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}