Evaluate
a^{2}+\frac{a}{3}-\frac{1}{90}
Expand
a^{2}+\frac{a}{3}-\frac{1}{90}
Share
Copied to clipboard
\frac{a}{3}+\frac{3a^{2}}{3}-\frac{\frac{1}{3}}{\frac{1\times 5+1}{5}}\times \left(\frac{1}{5}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2} times \frac{3}{3}.
\frac{a+3a^{2}}{3}-\frac{\frac{1}{3}}{\frac{1\times 5+1}{5}}\times \left(\frac{1}{5}\right)^{2}
Since \frac{a}{3} and \frac{3a^{2}}{3} have the same denominator, add them by adding their numerators.
\frac{a+3a^{2}}{3}-\frac{5}{3\left(1\times 5+1\right)}\times \left(\frac{1}{5}\right)^{2}
Divide \frac{1}{3} by \frac{1\times 5+1}{5} by multiplying \frac{1}{3} by the reciprocal of \frac{1\times 5+1}{5}.
\frac{a+3a^{2}}{3}-\frac{5}{3\left(5+1\right)}\times \left(\frac{1}{5}\right)^{2}
Multiply 1 and 5 to get 5.
\frac{a+3a^{2}}{3}-\frac{5}{3\times 6}\times \left(\frac{1}{5}\right)^{2}
Add 5 and 1 to get 6.
\frac{a+3a^{2}}{3}-\frac{5}{18}\times \left(\frac{1}{5}\right)^{2}
Multiply 3 and 6 to get 18.
\frac{a+3a^{2}}{3}-\frac{5}{18}\times \frac{1}{25}
Calculate \frac{1}{5} to the power of 2 and get \frac{1}{25}.
\frac{a+3a^{2}}{3}-\frac{1}{90}
Multiply \frac{5}{18} and \frac{1}{25} to get \frac{1}{90}.
\frac{30\left(a+3a^{2}\right)}{90}-\frac{1}{90}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 90 is 90. Multiply \frac{a+3a^{2}}{3} times \frac{30}{30}.
\frac{30\left(a+3a^{2}\right)-1}{90}
Since \frac{30\left(a+3a^{2}\right)}{90} and \frac{1}{90} have the same denominator, subtract them by subtracting their numerators.
\frac{30a+90a^{2}-1}{90}
Do the multiplications in 30\left(a+3a^{2}\right)-1.
-\frac{1}{90}+\frac{1}{3}a+a^{2}
Divide each term of 30a+90a^{2}-1 by 90 to get -\frac{1}{90}+\frac{1}{3}a+a^{2}.
\frac{a}{3}+\frac{3a^{2}}{3}-\frac{\frac{1}{3}}{\frac{1\times 5+1}{5}}\times \left(\frac{1}{5}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2} times \frac{3}{3}.
\frac{a+3a^{2}}{3}-\frac{\frac{1}{3}}{\frac{1\times 5+1}{5}}\times \left(\frac{1}{5}\right)^{2}
Since \frac{a}{3} and \frac{3a^{2}}{3} have the same denominator, add them by adding their numerators.
\frac{a+3a^{2}}{3}-\frac{5}{3\left(1\times 5+1\right)}\times \left(\frac{1}{5}\right)^{2}
Divide \frac{1}{3} by \frac{1\times 5+1}{5} by multiplying \frac{1}{3} by the reciprocal of \frac{1\times 5+1}{5}.
\frac{a+3a^{2}}{3}-\frac{5}{3\left(5+1\right)}\times \left(\frac{1}{5}\right)^{2}
Multiply 1 and 5 to get 5.
\frac{a+3a^{2}}{3}-\frac{5}{3\times 6}\times \left(\frac{1}{5}\right)^{2}
Add 5 and 1 to get 6.
\frac{a+3a^{2}}{3}-\frac{5}{18}\times \left(\frac{1}{5}\right)^{2}
Multiply 3 and 6 to get 18.
\frac{a+3a^{2}}{3}-\frac{5}{18}\times \frac{1}{25}
Calculate \frac{1}{5} to the power of 2 and get \frac{1}{25}.
\frac{a+3a^{2}}{3}-\frac{1}{90}
Multiply \frac{5}{18} and \frac{1}{25} to get \frac{1}{90}.
\frac{30\left(a+3a^{2}\right)}{90}-\frac{1}{90}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 90 is 90. Multiply \frac{a+3a^{2}}{3} times \frac{30}{30}.
\frac{30\left(a+3a^{2}\right)-1}{90}
Since \frac{30\left(a+3a^{2}\right)}{90} and \frac{1}{90} have the same denominator, subtract them by subtracting their numerators.
\frac{30a+90a^{2}-1}{90}
Do the multiplications in 30\left(a+3a^{2}\right)-1.
-\frac{1}{90}+\frac{1}{3}a+a^{2}
Divide each term of 30a+90a^{2}-1 by 90 to get -\frac{1}{90}+\frac{1}{3}a+a^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}