Evaluate
\frac{a^{2}}{3a+5}
Differentiate w.r.t. a
\frac{a\left(3a+10\right)}{\left(3a+5\right)^{2}}
Share
Copied to clipboard
\frac{a}{\frac{3a}{a}+\frac{5}{a}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{a}{a}.
\frac{a}{\frac{3a+5}{a}}
Since \frac{3a}{a} and \frac{5}{a} have the same denominator, add them by adding their numerators.
\frac{aa}{3a+5}
Divide a by \frac{3a+5}{a} by multiplying a by the reciprocal of \frac{3a+5}{a}.
\frac{a^{2}}{3a+5}
Multiply a and a to get a^{2}.
\frac{\left(5\times \frac{1}{a}+3\right)\frac{\mathrm{d}}{\mathrm{d}a}(a^{1})-a^{1}\frac{\mathrm{d}}{\mathrm{d}a}(5\times \frac{1}{a}+3)}{\left(5\times \frac{1}{a}+3\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(5\times \frac{1}{a}+3\right)a^{1-1}-a^{1}\left(-1\right)\times 5a^{-1-1}}{\left(5\times \frac{1}{a}+3\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(5\times \frac{1}{a}+3\right)a^{0}-a^{1}\left(-5\right)a^{-2}}{\left(5\times \frac{1}{a}+3\right)^{2}}
Do the arithmetic.
\frac{5\times \frac{1}{a}a^{0}+3a^{0}-a^{1}\left(-5\right)a^{-2}}{\left(5\times \frac{1}{a}+3\right)^{2}}
Expand using distributive property.
\frac{5\times \frac{1}{a}+3a^{0}-\left(-5a^{1-2}\right)}{\left(5\times \frac{1}{a}+3\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{5\times \frac{1}{a}+3a^{0}-\left(-5\times \frac{1}{a}\right)}{\left(5\times \frac{1}{a}+3\right)^{2}}
Do the arithmetic.
\frac{\left(5-\left(-5\right)\right)\times \frac{1}{a}+3a^{0}}{\left(5\times \frac{1}{a}+3\right)^{2}}
Combine like terms.
\frac{10\times \frac{1}{a}+3a^{0}}{\left(5\times \frac{1}{a}+3\right)^{2}}
Subtract -5 from 5.
\frac{\frac{1}{a}\left(10a^{0}+3a^{1}\right)}{\left(5\times \frac{1}{a}+3\right)^{2}}
Factor out \frac{1}{a}.
\frac{\frac{1}{a}\left(10a^{0}+3a\right)}{\left(5\times \frac{1}{a}+3\right)^{2}}
For any term t, t^{1}=t.
\frac{\frac{1}{a}\left(10\times 1+3a\right)}{\left(5\times \frac{1}{a}+3\right)^{2}}
For any term t except 0, t^{0}=1.
\frac{\frac{1}{a}\left(10+3a\right)}{\left(5\times \frac{1}{a}+3\right)^{2}}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}