Solve for a
a=\frac{2}{3}\approx 0.666666667
a=0
Share
Copied to clipboard
\frac{a}{2}=\frac{\frac{1}{2}a}{\frac{1}{2}\left(-3a+4\right)}
Factor the expressions that are not already factored in \frac{\frac{1}{2}a}{2-\frac{3}{2}a}.
\frac{a}{2}=\frac{a}{\left(\frac{1}{2}\right)^{0}\left(-3a+4\right)}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{a}{2}=\frac{a}{1\left(-3a+4\right)}
Calculate \frac{1}{2} to the power of 0 and get 1.
\frac{a}{2}=\frac{a}{-3a+4}
Use the distributive property to multiply 1 by -3a+4.
\frac{a}{2}-\frac{a}{-3a+4}=0
Subtract \frac{a}{-3a+4} from both sides.
\frac{a\left(-3a+4\right)}{2\left(-3a+4\right)}-\frac{2a}{2\left(-3a+4\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and -3a+4 is 2\left(-3a+4\right). Multiply \frac{a}{2} times \frac{-3a+4}{-3a+4}. Multiply \frac{a}{-3a+4} times \frac{2}{2}.
\frac{a\left(-3a+4\right)-2a}{2\left(-3a+4\right)}=0
Since \frac{a\left(-3a+4\right)}{2\left(-3a+4\right)} and \frac{2a}{2\left(-3a+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-3a^{2}+4a-2a}{2\left(-3a+4\right)}=0
Do the multiplications in a\left(-3a+4\right)-2a.
\frac{-3a^{2}+2a}{2\left(-3a+4\right)}=0
Combine like terms in -3a^{2}+4a-2a.
-3a^{2}+2a=0
Variable a cannot be equal to \frac{4}{3} since division by zero is not defined. Multiply both sides of the equation by 2\left(-3a+4\right).
a\left(-3a+2\right)=0
Factor out a.
a=0 a=\frac{2}{3}
To find equation solutions, solve a=0 and -3a+2=0.
\frac{a}{2}=\frac{\frac{1}{2}a}{\frac{1}{2}\left(-3a+4\right)}
Factor the expressions that are not already factored in \frac{\frac{1}{2}a}{2-\frac{3}{2}a}.
\frac{a}{2}=\frac{a}{\left(\frac{1}{2}\right)^{0}\left(-3a+4\right)}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{a}{2}=\frac{a}{1\left(-3a+4\right)}
Calculate \frac{1}{2} to the power of 0 and get 1.
\frac{a}{2}=\frac{a}{-3a+4}
Use the distributive property to multiply 1 by -3a+4.
\frac{a}{2}-\frac{a}{-3a+4}=0
Subtract \frac{a}{-3a+4} from both sides.
\frac{a\left(-3a+4\right)}{2\left(-3a+4\right)}-\frac{2a}{2\left(-3a+4\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and -3a+4 is 2\left(-3a+4\right). Multiply \frac{a}{2} times \frac{-3a+4}{-3a+4}. Multiply \frac{a}{-3a+4} times \frac{2}{2}.
\frac{a\left(-3a+4\right)-2a}{2\left(-3a+4\right)}=0
Since \frac{a\left(-3a+4\right)}{2\left(-3a+4\right)} and \frac{2a}{2\left(-3a+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-3a^{2}+4a-2a}{2\left(-3a+4\right)}=0
Do the multiplications in a\left(-3a+4\right)-2a.
\frac{-3a^{2}+2a}{2\left(-3a+4\right)}=0
Combine like terms in -3a^{2}+4a-2a.
-3a^{2}+2a=0
Variable a cannot be equal to \frac{4}{3} since division by zero is not defined. Multiply both sides of the equation by 2\left(-3a+4\right).
a=\frac{-2±\sqrt{2^{2}}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 2 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-2±2}{2\left(-3\right)}
Take the square root of 2^{2}.
a=\frac{-2±2}{-6}
Multiply 2 times -3.
a=\frac{0}{-6}
Now solve the equation a=\frac{-2±2}{-6} when ± is plus. Add -2 to 2.
a=0
Divide 0 by -6.
a=-\frac{4}{-6}
Now solve the equation a=\frac{-2±2}{-6} when ± is minus. Subtract 2 from -2.
a=\frac{2}{3}
Reduce the fraction \frac{-4}{-6} to lowest terms by extracting and canceling out 2.
a=0 a=\frac{2}{3}
The equation is now solved.
\frac{a}{2}=\frac{\frac{1}{2}a}{\frac{1}{2}\left(-3a+4\right)}
Factor the expressions that are not already factored in \frac{\frac{1}{2}a}{2-\frac{3}{2}a}.
\frac{a}{2}=\frac{a}{\left(\frac{1}{2}\right)^{0}\left(-3a+4\right)}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{a}{2}=\frac{a}{1\left(-3a+4\right)}
Calculate \frac{1}{2} to the power of 0 and get 1.
\frac{a}{2}=\frac{a}{-3a+4}
Use the distributive property to multiply 1 by -3a+4.
\frac{a}{2}-\frac{a}{-3a+4}=0
Subtract \frac{a}{-3a+4} from both sides.
\frac{a\left(-3a+4\right)}{2\left(-3a+4\right)}-\frac{2a}{2\left(-3a+4\right)}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and -3a+4 is 2\left(-3a+4\right). Multiply \frac{a}{2} times \frac{-3a+4}{-3a+4}. Multiply \frac{a}{-3a+4} times \frac{2}{2}.
\frac{a\left(-3a+4\right)-2a}{2\left(-3a+4\right)}=0
Since \frac{a\left(-3a+4\right)}{2\left(-3a+4\right)} and \frac{2a}{2\left(-3a+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-3a^{2}+4a-2a}{2\left(-3a+4\right)}=0
Do the multiplications in a\left(-3a+4\right)-2a.
\frac{-3a^{2}+2a}{2\left(-3a+4\right)}=0
Combine like terms in -3a^{2}+4a-2a.
-3a^{2}+2a=0
Variable a cannot be equal to \frac{4}{3} since division by zero is not defined. Multiply both sides of the equation by 2\left(-3a+4\right).
\frac{-3a^{2}+2a}{-3}=\frac{0}{-3}
Divide both sides by -3.
a^{2}+\frac{2}{-3}a=\frac{0}{-3}
Dividing by -3 undoes the multiplication by -3.
a^{2}-\frac{2}{3}a=\frac{0}{-3}
Divide 2 by -3.
a^{2}-\frac{2}{3}a=0
Divide 0 by -3.
a^{2}-\frac{2}{3}a+\left(-\frac{1}{3}\right)^{2}=\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{2}{3}a+\frac{1}{9}=\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
\left(a-\frac{1}{3}\right)^{2}=\frac{1}{9}
Factor a^{2}-\frac{2}{3}a+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{1}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Take the square root of both sides of the equation.
a-\frac{1}{3}=\frac{1}{3} a-\frac{1}{3}=-\frac{1}{3}
Simplify.
a=\frac{2}{3} a=0
Add \frac{1}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}