Evaluate
-a^{3}+\frac{2a^{2}}{3}+\frac{a}{2}
Factor
-a\left(a-\left(-\frac{\sqrt{22}}{6}+\frac{1}{3}\right)\right)\left(a-\left(\frac{\sqrt{22}}{6}+\frac{1}{3}\right)\right)
Share
Copied to clipboard
\frac{a}{2}+\frac{2a^{2}}{3}-a^{3}
Cancel out 4 and 4.
\frac{3a}{6}+\frac{2\times 2a^{2}}{6}-a^{3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{a}{2} times \frac{3}{3}. Multiply \frac{2a^{2}}{3} times \frac{2}{2}.
\frac{3a+2\times 2a^{2}}{6}-a^{3}
Since \frac{3a}{6} and \frac{2\times 2a^{2}}{6} have the same denominator, add them by adding their numerators.
\frac{3a+4a^{2}}{6}-a^{3}
Do the multiplications in 3a+2\times 2a^{2}.
\frac{3a+4a^{2}}{6}-\frac{6a^{3}}{6}
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{3} times \frac{6}{6}.
\frac{3a+4a^{2}-6a^{3}}{6}
Since \frac{3a+4a^{2}}{6} and \frac{6a^{3}}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}a-a^{3}+\frac{2}{3}a^{2}
Divide each term of 3a+4a^{2}-6a^{3} by 6 to get \frac{1}{2}a-a^{3}+\frac{2}{3}a^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}