Evaluate
\frac{a}{16}+\frac{7}{24}
Factor
\frac{3a+14}{48}
Share
Copied to clipboard
\frac{a}{16}+\frac{19}{24}-\frac{12}{24}
Least common multiple of 24 and 2 is 24. Convert \frac{19}{24} and \frac{1}{2} to fractions with denominator 24.
\frac{a}{16}+\frac{19-12}{24}
Since \frac{19}{24} and \frac{12}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{a}{16}+\frac{7}{24}
Subtract 12 from 19 to get 7.
\frac{3a}{48}+\frac{7\times 2}{48}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 16 and 24 is 48. Multiply \frac{a}{16} times \frac{3}{3}. Multiply \frac{7}{24} times \frac{2}{2}.
\frac{3a+7\times 2}{48}
Since \frac{3a}{48} and \frac{7\times 2}{48} have the same denominator, add them by adding their numerators.
\frac{3a+14}{48}
Do the multiplications in 3a+7\times 2.
\frac{3a+14}{48}
Factor out \frac{1}{48}.
3a+14
Consider 3a+38-24. Multiply and combine like terms.
\frac{3a+14}{48}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}