Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{a}{\left(a-1\right)\left(-a-1\right)}+\frac{a}{1+a^{2}}
Factor 1-a^{2}.
\frac{a\left(a^{2}+1\right)}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)}+\frac{a\left(a-1\right)\left(-a-1\right)}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(-a-1\right) and 1+a^{2} is \left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right). Multiply \frac{a}{\left(a-1\right)\left(-a-1\right)} times \frac{a^{2}+1}{a^{2}+1}. Multiply \frac{a}{1+a^{2}} times \frac{\left(a-1\right)\left(-a-1\right)}{\left(a-1\right)\left(-a-1\right)}.
\frac{a\left(a^{2}+1\right)+a\left(a-1\right)\left(-a-1\right)}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)}
Since \frac{a\left(a^{2}+1\right)}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)} and \frac{a\left(a-1\right)\left(-a-1\right)}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{a^{3}+a-a^{3}-a^{2}+a^{2}+a}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)}
Do the multiplications in a\left(a^{2}+1\right)+a\left(a-1\right)\left(-a-1\right).
\frac{2a}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)}
Combine like terms in a^{3}+a-a^{3}-a^{2}+a^{2}+a.
\frac{2a}{-a^{4}+1}
Expand \left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right).