Solve for a
a=\frac{d}{e}-\frac{b}{16}
Solve for b
b=\frac{16d}{e}-16a
Quiz
Linear Equation
5 problems similar to:
\frac { a } { 1 } + \frac { b } { 16 } = \frac { d } { e }
Share
Copied to clipboard
16a+b=16e^{-1}d
Multiply both sides of the equation by 16.
16a=16e^{-1}d-b
Subtract b from both sides.
16a=16\times \frac{1}{e}d-b
Reorder the terms.
16a=\frac{16}{e}d-b
Express 16\times \frac{1}{e} as a single fraction.
16a=\frac{16d}{e}-b
Express \frac{16}{e}d as a single fraction.
16a=\frac{16d}{e}-\frac{be}{e}
To add or subtract expressions, expand them to make their denominators the same. Multiply b times \frac{e}{e}.
16a=\frac{16d-be}{e}
Since \frac{16d}{e} and \frac{be}{e} have the same denominator, subtract them by subtracting their numerators.
16a=\frac{16d-eb}{e}
The equation is in standard form.
\frac{16a}{16}=\frac{\frac{16d}{e}-b}{16}
Divide both sides by 16.
a=\frac{\frac{16d}{e}-b}{16}
Dividing by 16 undoes the multiplication by 16.
a=\frac{d}{e}-\frac{b}{16}
Divide \frac{16d}{e}-b by 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}