Solve for a
a=\frac{8\sqrt{3}\sin(A)}{3}
\nexists n_{1}\in \mathrm{Z}\text{ : }A=\pi n_{1}
Solve for A
A=arcSin(\frac{1}{8}\times 3^{\frac{1}{2}}a)+2\pi n_{12}\text{, }n_{12}\in \mathrm{Z}
A=\pi +2\pi n_{21}+\left(-1\right)arcSin(\frac{1}{8}\times 3^{\frac{1}{2}}a)\text{, }n_{21}\in \mathrm{Z}
Share
Copied to clipboard
\frac{1}{\sin(A)}a=\frac{8}{\sqrt{3}}
The equation is in standard form.
\frac{\frac{1}{\sin(A)}a\sin(A)}{1}=\frac{8\sqrt{3}}{3\times \frac{1}{\sin(A)}}
Divide both sides by \left(\sin(A)\right)^{-1}.
a=\frac{8\sqrt{3}}{3\times \frac{1}{\sin(A)}}
Dividing by \left(\sin(A)\right)^{-1} undoes the multiplication by \left(\sin(A)\right)^{-1}.
a=\frac{8\sqrt{3}\sin(A)}{3}
Divide \frac{8\sqrt{3}}{3} by \left(\sin(A)\right)^{-1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}