Solve for a
a=\frac{27563735581699916b}{3489949670250097}
Solve for b
b=\frac{3489949670250097a}{27563735581699916}
Share
Copied to clipboard
\frac{a}{0.27563735581699916} = \frac{b}{0.03489949670250097}
Evaluate trigonometric functions in the problem
\frac{25000000000000000}{6890933895424979}a=\frac{100000000000000000b}{3489949670250097}
The equation is in standard form.
\frac{\frac{25000000000000000}{6890933895424979}a}{\frac{25000000000000000}{6890933895424979}}=\frac{100000000000000000b}{\frac{25000000000000000}{6890933895424979}\times 3489949670250097}
Divide both sides of the equation by \frac{25000000000000000}{6890933895424979}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{100000000000000000b}{\frac{25000000000000000}{6890933895424979}\times 3489949670250097}
Dividing by \frac{25000000000000000}{6890933895424979} undoes the multiplication by \frac{25000000000000000}{6890933895424979}.
a=\frac{27563735581699916b}{3489949670250097}
Divide \frac{100000000000000000b}{3489949670250097} by \frac{25000000000000000}{6890933895424979} by multiplying \frac{100000000000000000b}{3489949670250097} by the reciprocal of \frac{25000000000000000}{6890933895424979}.
\frac{a}{0.27563735581699916} = \frac{b}{0.03489949670250097}
Evaluate trigonometric functions in the problem
\frac{b}{0.03489949670250097}=\frac{a}{0.27563735581699916}
Swap sides so that all variable terms are on the left hand side.
\frac{100000000000000000}{3489949670250097}b=\frac{25000000000000000a}{6890933895424979}
The equation is in standard form.
\frac{\frac{100000000000000000}{3489949670250097}b}{\frac{100000000000000000}{3489949670250097}}=\frac{25000000000000000a}{\frac{100000000000000000}{3489949670250097}\times 6890933895424979}
Divide both sides of the equation by \frac{100000000000000000}{3489949670250097}, which is the same as multiplying both sides by the reciprocal of the fraction.
b=\frac{25000000000000000a}{\frac{100000000000000000}{3489949670250097}\times 6890933895424979}
Dividing by \frac{100000000000000000}{3489949670250097} undoes the multiplication by \frac{100000000000000000}{3489949670250097}.
b=\frac{3489949670250097a}{27563735581699916}
Divide \frac{25000000000000000a}{6890933895424979} by \frac{100000000000000000}{3489949670250097} by multiplying \frac{25000000000000000a}{6890933895424979} by the reciprocal of \frac{100000000000000000}{3489949670250097}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}