Solve for a
a=10\sqrt{6}\approx 24.494897428
Share
Copied to clipboard
\frac{a\times 2}{\sqrt{3}}=\frac{20}{\frac{\sqrt{2}}{2}}
Divide a by \frac{\sqrt{3}}{2} by multiplying a by the reciprocal of \frac{\sqrt{3}}{2}.
\frac{a\times 2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}=\frac{20}{\frac{\sqrt{2}}{2}}
Rationalize the denominator of \frac{a\times 2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{a\times 2\sqrt{3}}{3}=\frac{20}{\frac{\sqrt{2}}{2}}
The square of \sqrt{3} is 3.
\frac{a\times 2\sqrt{3}}{3}=\frac{20\times 2}{\sqrt{2}}
Divide 20 by \frac{\sqrt{2}}{2} by multiplying 20 by the reciprocal of \frac{\sqrt{2}}{2}.
\frac{a\times 2\sqrt{3}}{3}=\frac{40}{\sqrt{2}}
Multiply 20 and 2 to get 40.
\frac{a\times 2\sqrt{3}}{3}=\frac{40\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{40}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{a\times 2\sqrt{3}}{3}=\frac{40\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{a\times 2\sqrt{3}}{3}=20\sqrt{2}
Divide 40\sqrt{2} by 2 to get 20\sqrt{2}.
a\times 2\sqrt{3}=60\sqrt{2}
Multiply both sides of the equation by 3.
2\sqrt{3}a=60\sqrt{2}
The equation is in standard form.
\frac{2\sqrt{3}a}{2\sqrt{3}}=\frac{60\sqrt{2}}{2\sqrt{3}}
Divide both sides by 2\sqrt{3}.
a=\frac{60\sqrt{2}}{2\sqrt{3}}
Dividing by 2\sqrt{3} undoes the multiplication by 2\sqrt{3}.
a=10\sqrt{6}
Divide 60\sqrt{2} by 2\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}