Solve for a
a=6\sqrt{2}-2\sqrt{6}\approx 3.586301889
Share
Copied to clipboard
\frac{a\times 2}{\sqrt{2}}=\frac{\sqrt{8}\sqrt{3}}{\frac{\sqrt{6}+\sqrt{2}}{4}}
Divide a by \frac{\sqrt{2}}{2} by multiplying a by the reciprocal of \frac{\sqrt{2}}{2}.
\frac{a\times 2\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=\frac{\sqrt{8}\sqrt{3}}{\frac{\sqrt{6}+\sqrt{2}}{4}}
Rationalize the denominator of \frac{a\times 2}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{a\times 2\sqrt{2}}{2}=\frac{\sqrt{8}\sqrt{3}}{\frac{\sqrt{6}+\sqrt{2}}{4}}
The square of \sqrt{2} is 2.
\frac{a\times 2\sqrt{2}}{2}=\frac{2\sqrt{2}\sqrt{3}}{\frac{\sqrt{6}+\sqrt{2}}{4}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{a\times 2\sqrt{2}}{2}=\frac{2\sqrt{6}}{\frac{\sqrt{6}+\sqrt{2}}{4}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{a\times 2\sqrt{2}}{2}=\frac{2\sqrt{6}\times 4}{\sqrt{6}+\sqrt{2}}
Divide 2\sqrt{6} by \frac{\sqrt{6}+\sqrt{2}}{4} by multiplying 2\sqrt{6} by the reciprocal of \frac{\sqrt{6}+\sqrt{2}}{4}.
\frac{a\times 2\sqrt{2}}{2}=\frac{2\sqrt{6}\times 4\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}
Rationalize the denominator of \frac{2\sqrt{6}\times 4}{\sqrt{6}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{6}-\sqrt{2}.
\frac{a\times 2\sqrt{2}}{2}=\frac{2\sqrt{6}\times 4\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{a\times 2\sqrt{2}}{2}=\frac{2\sqrt{6}\times 4\left(\sqrt{6}-\sqrt{2}\right)}{6-2}
Square \sqrt{6}. Square \sqrt{2}.
\frac{a\times 2\sqrt{2}}{2}=\frac{2\sqrt{6}\times 4\left(\sqrt{6}-\sqrt{2}\right)}{4}
Subtract 2 from 6 to get 4.
\frac{a\times 2\sqrt{2}}{2}=\frac{8\sqrt{6}\left(\sqrt{6}-\sqrt{2}\right)}{4}
Multiply 2 and 4 to get 8.
\frac{a\times 2\sqrt{2}}{2}=2\sqrt{6}\left(\sqrt{6}-\sqrt{2}\right)
Divide 8\sqrt{6}\left(\sqrt{6}-\sqrt{2}\right) by 4 to get 2\sqrt{6}\left(\sqrt{6}-\sqrt{2}\right).
\frac{a\times 2\sqrt{2}}{2}=2\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}
Use the distributive property to multiply 2\sqrt{6} by \sqrt{6}-\sqrt{2}.
\frac{a\times 2\sqrt{2}}{2}=2\times 6-2\sqrt{6}\sqrt{2}
The square of \sqrt{6} is 6.
\frac{a\times 2\sqrt{2}}{2}=12-2\sqrt{6}\sqrt{2}
Multiply 2 and 6 to get 12.
\frac{a\times 2\sqrt{2}}{2}=12-2\sqrt{2}\sqrt{3}\sqrt{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{a\times 2\sqrt{2}}{2}=12-2\times 2\sqrt{3}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{a\times 2\sqrt{2}}{2}=12-4\sqrt{3}
Multiply -2 and 2 to get -4.
a\sqrt{2}=12-4\sqrt{3}
Cancel out 2 and 2.
\sqrt{2}a=12-4\sqrt{3}
The equation is in standard form.
\frac{\sqrt{2}a}{\sqrt{2}}=\frac{12-4\sqrt{3}}{\sqrt{2}}
Divide both sides by \sqrt{2}.
a=\frac{12-4\sqrt{3}}{\sqrt{2}}
Dividing by \sqrt{2} undoes the multiplication by \sqrt{2}.
a=6\sqrt{2}-2\sqrt{6}
Divide 12-4\sqrt{3} by \sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}