Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{1}{a}\times \frac{1}{b}\left(-a+b\right)\left(-a-b\right)}{\left(-b^{-2}a^{2}+1\right)a^{-2}}
Factor the expressions that are not already factored.
\frac{\frac{1}{b}a^{1}\left(-a+b\right)\left(-a-b\right)}{-b^{-2}a^{2}+1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{-ab+\frac{1}{b}a^{3}}{1-\left(\frac{1}{b}a\right)^{2}}
Expand the expression.
\frac{-ab+\frac{a^{3}}{b}}{1-\left(\frac{1}{b}a\right)^{2}}
Express \frac{1}{b}a^{3} as a single fraction.
\frac{-\frac{abb}{b}+\frac{a^{3}}{b}}{1-\left(\frac{1}{b}a\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -ab times \frac{b}{b}.
\frac{\frac{-abb+a^{3}}{b}}{1-\left(\frac{1}{b}a\right)^{2}}
Since -\frac{abb}{b} and \frac{a^{3}}{b} have the same denominator, add them by adding their numerators.
\frac{\frac{-ab^{2}+a^{3}}{b}}{1-\left(\frac{1}{b}a\right)^{2}}
Do the multiplications in -abb+a^{3}.
\frac{\frac{-ab^{2}+a^{3}}{b}}{1-\left(\frac{a}{b}\right)^{2}}
Express \frac{1}{b}a as a single fraction.
\frac{\frac{-ab^{2}+a^{3}}{b}}{1-\frac{a^{2}}{b^{2}}}
To raise \frac{a}{b} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{-ab^{2}+a^{3}}{b}}{\frac{b^{2}}{b^{2}}-\frac{a^{2}}{b^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b^{2}}{b^{2}}.
\frac{\frac{-ab^{2}+a^{3}}{b}}{\frac{b^{2}-a^{2}}{b^{2}}}
Since \frac{b^{2}}{b^{2}} and \frac{a^{2}}{b^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(-ab^{2}+a^{3}\right)b^{2}}{b\left(b^{2}-a^{2}\right)}
Divide \frac{-ab^{2}+a^{3}}{b} by \frac{b^{2}-a^{2}}{b^{2}} by multiplying \frac{-ab^{2}+a^{3}}{b} by the reciprocal of \frac{b^{2}-a^{2}}{b^{2}}.
\frac{b\left(a^{3}-ab^{2}\right)}{-a^{2}+b^{2}}
Cancel out b in both numerator and denominator.
\frac{ab\left(a+b\right)\left(a-b\right)}{\left(a+b\right)\left(-a+b\right)}
Factor the expressions that are not already factored.
\frac{-ab\left(a+b\right)\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}
Extract the negative sign in a-b.
-ab
Cancel out \left(a+b\right)\left(-a+b\right) in both numerator and denominator.
\frac{\frac{1}{a}\times \frac{1}{b}\left(-a+b\right)\left(-a-b\right)}{\left(-b^{-2}a^{2}+1\right)a^{-2}}
Factor the expressions that are not already factored.
\frac{\frac{1}{b}a^{1}\left(-a+b\right)\left(-a-b\right)}{-b^{-2}a^{2}+1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{-ab+\frac{1}{b}a^{3}}{1-\left(\frac{1}{b}a\right)^{2}}
Expand the expression.
\frac{-ab+\frac{a^{3}}{b}}{1-\left(\frac{1}{b}a\right)^{2}}
Express \frac{1}{b}a^{3} as a single fraction.
\frac{-\frac{abb}{b}+\frac{a^{3}}{b}}{1-\left(\frac{1}{b}a\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -ab times \frac{b}{b}.
\frac{\frac{-abb+a^{3}}{b}}{1-\left(\frac{1}{b}a\right)^{2}}
Since -\frac{abb}{b} and \frac{a^{3}}{b} have the same denominator, add them by adding their numerators.
\frac{\frac{-ab^{2}+a^{3}}{b}}{1-\left(\frac{1}{b}a\right)^{2}}
Do the multiplications in -abb+a^{3}.
\frac{\frac{-ab^{2}+a^{3}}{b}}{1-\left(\frac{a}{b}\right)^{2}}
Express \frac{1}{b}a as a single fraction.
\frac{\frac{-ab^{2}+a^{3}}{b}}{1-\frac{a^{2}}{b^{2}}}
To raise \frac{a}{b} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{-ab^{2}+a^{3}}{b}}{\frac{b^{2}}{b^{2}}-\frac{a^{2}}{b^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b^{2}}{b^{2}}.
\frac{\frac{-ab^{2}+a^{3}}{b}}{\frac{b^{2}-a^{2}}{b^{2}}}
Since \frac{b^{2}}{b^{2}} and \frac{a^{2}}{b^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(-ab^{2}+a^{3}\right)b^{2}}{b\left(b^{2}-a^{2}\right)}
Divide \frac{-ab^{2}+a^{3}}{b} by \frac{b^{2}-a^{2}}{b^{2}} by multiplying \frac{-ab^{2}+a^{3}}{b} by the reciprocal of \frac{b^{2}-a^{2}}{b^{2}}.
\frac{b\left(a^{3}-ab^{2}\right)}{-a^{2}+b^{2}}
Cancel out b in both numerator and denominator.
\frac{ab\left(a+b\right)\left(a-b\right)}{\left(a+b\right)\left(-a+b\right)}
Factor the expressions that are not already factored.
\frac{-ab\left(a+b\right)\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}
Extract the negative sign in a-b.
-ab
Cancel out \left(a+b\right)\left(-a+b\right) in both numerator and denominator.