Solve for a (complex solution)
a=e^{\frac{Im(m)arg(b^{m})+iRe(m)arg(b^{m})}{\left(Re(m)\right)^{2}+\left(Im(m)\right)^{2}}-\frac{2\pi n_{1}iRe(m)}{\left(Re(m)\right)^{2}+\left(Im(m)\right)^{2}}-\frac{2\pi n_{1}Im(m)}{\left(Re(m)\right)^{2}+\left(Im(m)\right)^{2}}}\left(|b^{m}|\right)^{\frac{Re(m)-iIm(m)}{\left(Re(m)\right)^{2}+\left(Im(m)\right)^{2}}}
n_{1}\in \mathrm{Z}
b\neq 0\text{ or }m=0
Solve for b (complex solution)
b=e^{\frac{Im(m)arg(a^{m})+iRe(m)arg(a^{m})}{\left(Re(m)\right)^{2}+\left(Im(m)\right)^{2}}-\frac{2\pi n_{1}iRe(m)}{\left(Re(m)\right)^{2}+\left(Im(m)\right)^{2}}-\frac{2\pi n_{1}Im(m)}{\left(Re(m)\right)^{2}+\left(Im(m)\right)^{2}}}\left(|a^{m}|\right)^{\frac{Re(m)-iIm(m)}{\left(Re(m)\right)^{2}+\left(Im(m)\right)^{2}}}
n_{1}\in \mathrm{Z}
m=0\text{ or }a\neq 0
Solve for a
\left\{\begin{matrix}a=\left(b^{m}\right)^{\frac{1}{m}}\text{, }&\left(Denominator(m)\text{bmod}2=1\text{ and }Numerator(m)\text{bmod}2=1\text{ and }b^{m}<0\text{ and }b\neq 0\text{ and }\left(b^{m}\right)^{\frac{1}{m}}\neq 0\right)\text{ or }\left(m\neq 0\text{ and }b<0\text{ and }Denominator(m)\text{bmod}2=1\text{ and }b^{m}>0\right)\text{ or }\left(\left(b^{m}\right)^{\frac{1}{m}}<0\text{ and }m\neq 0\text{ and }Denominator(m)\text{bmod}2=1\text{ and }b>0\right)\text{ or }\left(\left(b^{m}\right)^{\frac{1}{m}}<0\text{ and }b^{m}\geq 0\text{ and }m>0\text{ and }Denominator(m)\text{bmod}2=1\text{ and }b>0\right)\text{ or }\left(\left(b^{m}\right)^{\frac{1}{m}}>0\text{ and }b>0\text{ and }b^{m}\geq 0\text{ and }m>0\right)\text{ or }\left(\left(b^{m}\right)^{\frac{1}{m}}>0\text{ and }m\neq 0\text{ and }b>0\right)\\a=-\left(b^{m}\right)^{\frac{1}{m}}\text{, }&\left(b^{m}>0\text{ and }m\neq 0\text{ and }b<0\text{ and }Denominator(m)\text{bmod}2=1\text{ and }Numerator(m)\text{bmod}2=0\right)\text{ or }\left(m\neq 0\text{ and }b>0\text{ and }\left(b^{m}\right)^{\frac{1}{m}}>0\text{ and }Numerator(m)\text{bmod}2=0\text{ and }Denominator(m)\text{bmod}2=1\right)\text{ or }\left(b^{m}<0\text{ and }Denominator(m)\text{bmod}2=1\text{ and }Numerator(m)\text{bmod}2=1\text{ and }\left(b^{m}\right)^{\frac{1}{m}}>0\text{ and }b\neq 0\text{ and }Numerator(m)\text{bmod}2=0\right)\text{ or }\left(b^{m}<0\text{ and }b<0\text{ and }Denominator(m)\text{bmod}2=1\text{ and }Numerator(m)\text{bmod}2=1\text{ and }\left(b^{m}\right)^{\frac{1}{m}}<0\text{ and }Numerator(m)\text{bmod}2=0\right)\text{ or }\left(m\neq 0\text{ and }b>0\text{ and }\left(b^{m}\right)^{\frac{1}{m}}<0\text{ and }Numerator(m)\text{bmod}2=0\right)\\a\neq 0\text{, }&b\neq 0\text{ and }b\neq -1\text{ and }m=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\left(a^{m}\right)^{\frac{1}{m}}\text{, }&\left(m\neq 0\text{ and }a^{m}>0\text{ and }Denominator(m)\text{bmod}2=1\text{ and }a<0\right)\text{ or }\left(a^{m}<0\text{ and }Denominator(m)\text{bmod}2=1\text{ and }Numerator(m)\text{bmod}2=1\text{ and }a<0\right)\text{ or }\left(\left(a^{m}\right)^{\frac{1}{m}}<0\text{ and }a>0\text{ and }a^{m}\geq 0\text{ and }m>0\text{ and }Denominator(m)\text{bmod}2=1\right)\text{ or }\left(\left(a^{m}\right)^{\frac{1}{m}}<0\text{ and }m\neq 0\text{ and }a>0\text{ and }Denominator(m)\text{bmod}2=1\right)\text{ or }\left(\left(a^{m}\right)^{\frac{1}{m}}>0\text{ and }a>0\text{ and }a^{m}\geq 0\text{ and }m>0\right)\text{ or }\left(\left(a^{m}\right)^{\frac{1}{m}}>0\text{ and }m\neq 0\text{ and }a>0\right)\text{ or }\left(Denominator(m)\text{bmod}2=1\text{ and }Numerator(m)\text{bmod}2=1\text{ and }a^{m}<0\text{ and }a>0\text{ and }\left(a^{m}\right)^{\frac{1}{m}}\neq 0\right)\\b=-\left(a^{m}\right)^{\frac{1}{m}}\text{, }&\left(a^{m}>0\text{ and }m\neq 0\text{ and }a<0\text{ and }Denominator(m)\text{bmod}2=1\text{ and }Numerator(m)\text{bmod}2=0\right)\text{ or }\left(a<0\text{ and }Denominator(m)\text{bmod}2=1\text{ and }Numerator(m)\text{bmod}2=1\text{ and }Numerator(m)\text{bmod}2=0\text{ and }a^{m}<0\right)\text{ or }\left(a^{m}<0\text{ and }a>0\text{ and }Numerator(m)\text{bmod}2=1\text{ and }\left(a^{m}\right)^{\frac{1}{m}}>0\text{ and }Denominator(m)\text{bmod}2=1\text{ and }Numerator(m)\text{bmod}2=0\right)\text{ or }\left(\left(a^{m}\right)^{\frac{1}{m}}>0\text{ and }m\neq 0\text{ and }a>0\text{ and }Numerator(m)\text{bmod}2=0\text{ and }Denominator(m)\text{bmod}2=1\right)\text{ or }\left(a^{m}<0\text{ and }a>0\text{ and }\left(a^{m}\right)^{\frac{1}{m}}<0\text{ and }Numerator(m)\text{bmod}2=0\text{ and }Numerator(m)\text{bmod}2=1\right)\text{ or }\left(m\neq 0\text{ and }a>0\text{ and }\left(a^{m}\right)^{\frac{1}{m}}<0\text{ and }Numerator(m)\text{bmod}2=0\right)\\b\neq 0\text{, }&m=0\text{ and }a\neq 0\end{matrix}\right.
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}