Evaluate
a^{2}+b^{2}
Expand
a^{2}+b^{2}
Share
Copied to clipboard
\frac{\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{\left(a-b\right)^{2}}\times \frac{\left(a+b\right)^{2}-4ab}{a^{3}-b^{3}}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Factor the expressions that are not already factored in \frac{a^{4}-b^{4}}{a^{2}+b^{2}-2ab}.
\frac{\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a-b}\times \frac{\left(a+b\right)^{2}-4ab}{a^{3}-b^{3}}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Cancel out a-b in both numerator and denominator.
\frac{\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a-b}\times \frac{\left(a-b\right)^{2}}{\left(a-b\right)\left(a^{2}+ab+b^{2}\right)}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Factor the expressions that are not already factored in \frac{\left(a+b\right)^{2}-4ab}{a^{3}-b^{3}}.
\frac{\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a-b}\times \frac{a-b}{a^{2}+ab+b^{2}}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Cancel out a-b in both numerator and denominator.
\frac{\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)\left(a-b\right)}{\left(a-b\right)\left(a^{2}+ab+b^{2}\right)}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Multiply \frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a-b} times \frac{a-b}{a^{2}+ab+b^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a^{2}+ab+b^{2}}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Cancel out a-b in both numerator and denominator.
\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)\left(a^{2}+ab+b^{2}\right)}{\left(a^{2}+ab+b^{2}\right)\left(a+b\right)}
Divide \frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a^{2}+ab+b^{2}} by \frac{a+b}{a^{2}+ab+b^{2}} by multiplying \frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a^{2}+ab+b^{2}} by the reciprocal of \frac{a+b}{a^{2}+ab+b^{2}}.
a^{2}+b^{2}
Cancel out \left(a+b\right)\left(a^{2}+ab+b^{2}\right) in both numerator and denominator.
\frac{\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{\left(a-b\right)^{2}}\times \frac{\left(a+b\right)^{2}-4ab}{a^{3}-b^{3}}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Factor the expressions that are not already factored in \frac{a^{4}-b^{4}}{a^{2}+b^{2}-2ab}.
\frac{\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a-b}\times \frac{\left(a+b\right)^{2}-4ab}{a^{3}-b^{3}}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Cancel out a-b in both numerator and denominator.
\frac{\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a-b}\times \frac{\left(a-b\right)^{2}}{\left(a-b\right)\left(a^{2}+ab+b^{2}\right)}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Factor the expressions that are not already factored in \frac{\left(a+b\right)^{2}-4ab}{a^{3}-b^{3}}.
\frac{\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a-b}\times \frac{a-b}{a^{2}+ab+b^{2}}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Cancel out a-b in both numerator and denominator.
\frac{\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)\left(a-b\right)}{\left(a-b\right)\left(a^{2}+ab+b^{2}\right)}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Multiply \frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a-b} times \frac{a-b}{a^{2}+ab+b^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a^{2}+ab+b^{2}}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Cancel out a-b in both numerator and denominator.
\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)\left(a^{2}+ab+b^{2}\right)}{\left(a^{2}+ab+b^{2}\right)\left(a+b\right)}
Divide \frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a^{2}+ab+b^{2}} by \frac{a+b}{a^{2}+ab+b^{2}} by multiplying \frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a^{2}+ab+b^{2}} by the reciprocal of \frac{a+b}{a^{2}+ab+b^{2}}.
a^{2}+b^{2}
Cancel out \left(a+b\right)\left(a^{2}+ab+b^{2}\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}