Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

\frac{\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{\left(a-b\right)^{2}}\times \frac{\left(a+b\right)^{2}-4ab}{a^{3}-b^{3}}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Factor the expressions that are not already factored in \frac{a^{4}-b^{4}}{a^{2}+b^{2}-2ab}.
\frac{\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a-b}\times \frac{\left(a+b\right)^{2}-4ab}{a^{3}-b^{3}}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Cancel out a-b in both numerator and denominator.
\frac{\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a-b}\times \frac{\left(a-b\right)^{2}}{\left(a-b\right)\left(a^{2}+ab+b^{2}\right)}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Factor the expressions that are not already factored in \frac{\left(a+b\right)^{2}-4ab}{a^{3}-b^{3}}.
\frac{\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a-b}\times \frac{a-b}{a^{2}+ab+b^{2}}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Cancel out a-b in both numerator and denominator.
\frac{\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)\left(a-b\right)}{\left(a-b\right)\left(a^{2}+ab+b^{2}\right)}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Multiply \frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a-b} times \frac{a-b}{a^{2}+ab+b^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a^{2}+ab+b^{2}}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Cancel out a-b in both numerator and denominator.
\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)\left(a^{2}+ab+b^{2}\right)}{\left(a^{2}+ab+b^{2}\right)\left(a+b\right)}
Divide \frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a^{2}+ab+b^{2}} by \frac{a+b}{a^{2}+ab+b^{2}} by multiplying \frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a^{2}+ab+b^{2}} by the reciprocal of \frac{a+b}{a^{2}+ab+b^{2}}.
a^{2}+b^{2}
Cancel out \left(a+b\right)\left(a^{2}+ab+b^{2}\right) in both numerator and denominator.
\frac{\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{\left(a-b\right)^{2}}\times \frac{\left(a+b\right)^{2}-4ab}{a^{3}-b^{3}}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Factor the expressions that are not already factored in \frac{a^{4}-b^{4}}{a^{2}+b^{2}-2ab}.
\frac{\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a-b}\times \frac{\left(a+b\right)^{2}-4ab}{a^{3}-b^{3}}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Cancel out a-b in both numerator and denominator.
\frac{\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a-b}\times \frac{\left(a-b\right)^{2}}{\left(a-b\right)\left(a^{2}+ab+b^{2}\right)}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Factor the expressions that are not already factored in \frac{\left(a+b\right)^{2}-4ab}{a^{3}-b^{3}}.
\frac{\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a-b}\times \frac{a-b}{a^{2}+ab+b^{2}}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Cancel out a-b in both numerator and denominator.
\frac{\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)\left(a-b\right)}{\left(a-b\right)\left(a^{2}+ab+b^{2}\right)}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Multiply \frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a-b} times \frac{a-b}{a^{2}+ab+b^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a^{2}+ab+b^{2}}}{\frac{a+b}{a^{2}+ab+b^{2}}}
Cancel out a-b in both numerator and denominator.
\frac{\left(a+b\right)\left(a^{2}+b^{2}\right)\left(a^{2}+ab+b^{2}\right)}{\left(a^{2}+ab+b^{2}\right)\left(a+b\right)}
Divide \frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a^{2}+ab+b^{2}} by \frac{a+b}{a^{2}+ab+b^{2}} by multiplying \frac{\left(a+b\right)\left(a^{2}+b^{2}\right)}{a^{2}+ab+b^{2}} by the reciprocal of \frac{a+b}{a^{2}+ab+b^{2}}.
a^{2}+b^{2}
Cancel out \left(a+b\right)\left(a^{2}+ab+b^{2}\right) in both numerator and denominator.