Evaluate
-\frac{a^{2}+1}{a-1}
Expand
-\frac{a^{2}+1}{a-1}
Share
Copied to clipboard
\frac{\left(a-1\right)\left(a+1\right)\left(a^{2}+a+1\right)}{\left(a-1\right)\left(-b^{2}-1\right)\left(a^{2}+a+1\right)}\times \frac{\left(2+\frac{b}{a}\left(a^{2}-1\right)\right)^{2}+\left(2b-\frac{1}{a}\left(a^{2}-1\right)\right)^{2}}{a^{2}-a^{-2}}
Factor the expressions that are not already factored in \frac{a^{4}+a^{3}-a-1}{1-a^{3}b^{2}-a^{3}+b^{2}}.
\frac{a+1}{-b^{2}-1}\times \frac{\left(2+\frac{b}{a}\left(a^{2}-1\right)\right)^{2}+\left(2b-\frac{1}{a}\left(a^{2}-1\right)\right)^{2}}{a^{2}-a^{-2}}
Cancel out \left(a-1\right)\left(a^{2}+a+1\right) in both numerator and denominator.
\frac{a+1}{-b^{2}-1}\times \frac{\left(2+\frac{b\left(a^{2}-1\right)}{a}\right)^{2}+\left(2b-\frac{1}{a}\left(a^{2}-1\right)\right)^{2}}{a^{2}-a^{-2}}
Express \frac{b}{a}\left(a^{2}-1\right) as a single fraction.
\frac{a+1}{-b^{2}-1}\times \frac{\left(\frac{2a}{a}+\frac{b\left(a^{2}-1\right)}{a}\right)^{2}+\left(2b-\frac{1}{a}\left(a^{2}-1\right)\right)^{2}}{a^{2}-a^{-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{a}{a}.
\frac{a+1}{-b^{2}-1}\times \frac{\left(\frac{2a+b\left(a^{2}-1\right)}{a}\right)^{2}+\left(2b-\frac{1}{a}\left(a^{2}-1\right)\right)^{2}}{a^{2}-a^{-2}}
Since \frac{2a}{a} and \frac{b\left(a^{2}-1\right)}{a} have the same denominator, add them by adding their numerators.
\frac{a+1}{-b^{2}-1}\times \frac{\left(\frac{2a+ba^{2}-b}{a}\right)^{2}+\left(2b-\frac{1}{a}\left(a^{2}-1\right)\right)^{2}}{a^{2}-a^{-2}}
Do the multiplications in 2a+b\left(a^{2}-1\right).
\frac{a+1}{-b^{2}-1}\times \frac{\frac{\left(2a+ba^{2}-b\right)^{2}}{a^{2}}+\left(2b-\frac{1}{a}\left(a^{2}-1\right)\right)^{2}}{a^{2}-a^{-2}}
To raise \frac{2a+ba^{2}-b}{a} to a power, raise both numerator and denominator to the power and then divide.
\frac{a+1}{-b^{2}-1}\times \frac{\frac{\left(2a+ba^{2}-b\right)^{2}}{a^{2}}+\left(2b-\frac{a^{2}-1}{a}\right)^{2}}{a^{2}-a^{-2}}
Express \frac{1}{a}\left(a^{2}-1\right) as a single fraction.
\frac{a+1}{-b^{2}-1}\times \frac{\frac{\left(2a+ba^{2}-b\right)^{2}}{a^{2}}+\left(\frac{2ba}{a}-\frac{a^{2}-1}{a}\right)^{2}}{a^{2}-a^{-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2b times \frac{a}{a}.
\frac{a+1}{-b^{2}-1}\times \frac{\frac{\left(2a+ba^{2}-b\right)^{2}}{a^{2}}+\left(\frac{2ba-\left(a^{2}-1\right)}{a}\right)^{2}}{a^{2}-a^{-2}}
Since \frac{2ba}{a} and \frac{a^{2}-1}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{a+1}{-b^{2}-1}\times \frac{\frac{\left(2a+ba^{2}-b\right)^{2}}{a^{2}}+\left(\frac{2ba-a^{2}+1}{a}\right)^{2}}{a^{2}-a^{-2}}
Do the multiplications in 2ba-\left(a^{2}-1\right).
\frac{a+1}{-b^{2}-1}\times \frac{\frac{\left(2a+ba^{2}-b\right)^{2}}{a^{2}}+\frac{\left(2ba-a^{2}+1\right)^{2}}{a^{2}}}{a^{2}-a^{-2}}
To raise \frac{2ba-a^{2}+1}{a} to a power, raise both numerator and denominator to the power and then divide.
\frac{a+1}{-b^{2}-1}\times \frac{\frac{\left(2a+ba^{2}-b\right)^{2}+\left(2ba-a^{2}+1\right)^{2}}{a^{2}}}{a^{2}-a^{-2}}
Since \frac{\left(2a+ba^{2}-b\right)^{2}}{a^{2}} and \frac{\left(2ba-a^{2}+1\right)^{2}}{a^{2}} have the same denominator, add them by adding their numerators.
\frac{a+1}{-b^{2}-1}\times \frac{\frac{4a^{2}+2a^{3}b-2ab+2a^{3}b+b^{2}a^{4}-b^{2}a^{2}-2ab-b^{2}a^{2}+b^{2}+4b^{2}a^{2}-2ba^{3}+2ba-2ba^{3}+a^{4}-a^{2}+2ba-a^{2}+1}{a^{2}}}{a^{2}-a^{-2}}
Do the multiplications in \left(2a+ba^{2}-b\right)^{2}+\left(2ba-a^{2}+1\right)^{2}.
\frac{a+1}{-b^{2}-1}\times \frac{\frac{2a^{2}+b^{2}a^{4}+b^{2}+2b^{2}a^{2}+a^{4}+1}{a^{2}}}{a^{2}-a^{-2}}
Combine like terms in 4a^{2}+2a^{3}b-2ab+2a^{3}b+b^{2}a^{4}-b^{2}a^{2}-2ab-b^{2}a^{2}+b^{2}+4b^{2}a^{2}-2ba^{3}+2ba-2ba^{3}+a^{4}-a^{2}+2ba-a^{2}+1.
\frac{a+1}{-b^{2}-1}\times \frac{2a^{2}+b^{2}a^{4}+b^{2}+2b^{2}a^{2}+a^{4}+1}{a^{2}\left(a^{2}-a^{-2}\right)}
Express \frac{\frac{2a^{2}+b^{2}a^{4}+b^{2}+2b^{2}a^{2}+a^{4}+1}{a^{2}}}{a^{2}-a^{-2}} as a single fraction.
\frac{a+1}{-b^{2}-1}\times \frac{\left(b^{2}+1\right)\left(a^{2}+1\right)^{2}}{a^{-2}\left(a-1\right)\left(a+1\right)a^{2}\left(a^{2}+1\right)}
Factor the expressions that are not already factored in \frac{2a^{2}+b^{2}a^{4}+b^{2}+2b^{2}a^{2}+a^{4}+1}{a^{2}\left(a^{2}-a^{-2}\right)}.
\frac{a+1}{-b^{2}-1}\times \frac{\left(a^{2}+1\right)\left(b^{2}+1\right)}{a^{-2}\left(a-1\right)\left(a+1\right)a^{2}}
Cancel out a^{2}+1 in both numerator and denominator.
\frac{a+1}{-b^{2}-1}\times \frac{\left(a^{2}+1\right)\left(b^{2}+1\right)}{\left(a-1\right)\left(a+1\right)}
Multiply a^{-2} and a^{2} to get 1.
\frac{\left(a+1\right)\left(a^{2}+1\right)\left(b^{2}+1\right)}{\left(-b^{2}-1\right)\left(a-1\right)\left(a+1\right)}
Multiply \frac{a+1}{-b^{2}-1} times \frac{\left(a^{2}+1\right)\left(b^{2}+1\right)}{\left(a-1\right)\left(a+1\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(a+1\right)\left(-b^{2}-1\right)\left(a^{2}+1\right)}{\left(a-1\right)\left(a+1\right)\left(-b^{2}-1\right)}
Extract the negative sign in b^{2}+1.
\frac{-\left(a^{2}+1\right)}{a-1}
Cancel out \left(a+1\right)\left(-b^{2}-1\right) in both numerator and denominator.
\frac{-a^{2}-1}{a-1}
To find the opposite of a^{2}+1, find the opposite of each term.
\frac{\left(a-1\right)\left(a+1\right)\left(a^{2}+a+1\right)}{\left(a-1\right)\left(-b^{2}-1\right)\left(a^{2}+a+1\right)}\times \frac{\left(2+\frac{b}{a}\left(a^{2}-1\right)\right)^{2}+\left(2b-\frac{1}{a}\left(a^{2}-1\right)\right)^{2}}{a^{2}-a^{-2}}
Factor the expressions that are not already factored in \frac{a^{4}+a^{3}-a-1}{1-a^{3}b^{2}-a^{3}+b^{2}}.
\frac{a+1}{-b^{2}-1}\times \frac{\left(2+\frac{b}{a}\left(a^{2}-1\right)\right)^{2}+\left(2b-\frac{1}{a}\left(a^{2}-1\right)\right)^{2}}{a^{2}-a^{-2}}
Cancel out \left(a-1\right)\left(a^{2}+a+1\right) in both numerator and denominator.
\frac{a+1}{-b^{2}-1}\times \frac{\left(2+\frac{b\left(a^{2}-1\right)}{a}\right)^{2}+\left(2b-\frac{1}{a}\left(a^{2}-1\right)\right)^{2}}{a^{2}-a^{-2}}
Express \frac{b}{a}\left(a^{2}-1\right) as a single fraction.
\frac{a+1}{-b^{2}-1}\times \frac{\left(\frac{2a}{a}+\frac{b\left(a^{2}-1\right)}{a}\right)^{2}+\left(2b-\frac{1}{a}\left(a^{2}-1\right)\right)^{2}}{a^{2}-a^{-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{a}{a}.
\frac{a+1}{-b^{2}-1}\times \frac{\left(\frac{2a+b\left(a^{2}-1\right)}{a}\right)^{2}+\left(2b-\frac{1}{a}\left(a^{2}-1\right)\right)^{2}}{a^{2}-a^{-2}}
Since \frac{2a}{a} and \frac{b\left(a^{2}-1\right)}{a} have the same denominator, add them by adding their numerators.
\frac{a+1}{-b^{2}-1}\times \frac{\left(\frac{2a+ba^{2}-b}{a}\right)^{2}+\left(2b-\frac{1}{a}\left(a^{2}-1\right)\right)^{2}}{a^{2}-a^{-2}}
Do the multiplications in 2a+b\left(a^{2}-1\right).
\frac{a+1}{-b^{2}-1}\times \frac{\frac{\left(2a+ba^{2}-b\right)^{2}}{a^{2}}+\left(2b-\frac{1}{a}\left(a^{2}-1\right)\right)^{2}}{a^{2}-a^{-2}}
To raise \frac{2a+ba^{2}-b}{a} to a power, raise both numerator and denominator to the power and then divide.
\frac{a+1}{-b^{2}-1}\times \frac{\frac{\left(2a+ba^{2}-b\right)^{2}}{a^{2}}+\left(2b-\frac{a^{2}-1}{a}\right)^{2}}{a^{2}-a^{-2}}
Express \frac{1}{a}\left(a^{2}-1\right) as a single fraction.
\frac{a+1}{-b^{2}-1}\times \frac{\frac{\left(2a+ba^{2}-b\right)^{2}}{a^{2}}+\left(\frac{2ba}{a}-\frac{a^{2}-1}{a}\right)^{2}}{a^{2}-a^{-2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2b times \frac{a}{a}.
\frac{a+1}{-b^{2}-1}\times \frac{\frac{\left(2a+ba^{2}-b\right)^{2}}{a^{2}}+\left(\frac{2ba-\left(a^{2}-1\right)}{a}\right)^{2}}{a^{2}-a^{-2}}
Since \frac{2ba}{a} and \frac{a^{2}-1}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{a+1}{-b^{2}-1}\times \frac{\frac{\left(2a+ba^{2}-b\right)^{2}}{a^{2}}+\left(\frac{2ba-a^{2}+1}{a}\right)^{2}}{a^{2}-a^{-2}}
Do the multiplications in 2ba-\left(a^{2}-1\right).
\frac{a+1}{-b^{2}-1}\times \frac{\frac{\left(2a+ba^{2}-b\right)^{2}}{a^{2}}+\frac{\left(2ba-a^{2}+1\right)^{2}}{a^{2}}}{a^{2}-a^{-2}}
To raise \frac{2ba-a^{2}+1}{a} to a power, raise both numerator and denominator to the power and then divide.
\frac{a+1}{-b^{2}-1}\times \frac{\frac{\left(2a+ba^{2}-b\right)^{2}+\left(2ba-a^{2}+1\right)^{2}}{a^{2}}}{a^{2}-a^{-2}}
Since \frac{\left(2a+ba^{2}-b\right)^{2}}{a^{2}} and \frac{\left(2ba-a^{2}+1\right)^{2}}{a^{2}} have the same denominator, add them by adding their numerators.
\frac{a+1}{-b^{2}-1}\times \frac{\frac{4a^{2}+2a^{3}b-2ab+2a^{3}b+b^{2}a^{4}-b^{2}a^{2}-2ab-b^{2}a^{2}+b^{2}+4b^{2}a^{2}-2ba^{3}+2ba-2ba^{3}+a^{4}-a^{2}+2ba-a^{2}+1}{a^{2}}}{a^{2}-a^{-2}}
Do the multiplications in \left(2a+ba^{2}-b\right)^{2}+\left(2ba-a^{2}+1\right)^{2}.
\frac{a+1}{-b^{2}-1}\times \frac{\frac{2a^{2}+b^{2}a^{4}+b^{2}+2b^{2}a^{2}+a^{4}+1}{a^{2}}}{a^{2}-a^{-2}}
Combine like terms in 4a^{2}+2a^{3}b-2ab+2a^{3}b+b^{2}a^{4}-b^{2}a^{2}-2ab-b^{2}a^{2}+b^{2}+4b^{2}a^{2}-2ba^{3}+2ba-2ba^{3}+a^{4}-a^{2}+2ba-a^{2}+1.
\frac{a+1}{-b^{2}-1}\times \frac{2a^{2}+b^{2}a^{4}+b^{2}+2b^{2}a^{2}+a^{4}+1}{a^{2}\left(a^{2}-a^{-2}\right)}
Express \frac{\frac{2a^{2}+b^{2}a^{4}+b^{2}+2b^{2}a^{2}+a^{4}+1}{a^{2}}}{a^{2}-a^{-2}} as a single fraction.
\frac{a+1}{-b^{2}-1}\times \frac{\left(b^{2}+1\right)\left(a^{2}+1\right)^{2}}{a^{-2}\left(a-1\right)\left(a+1\right)a^{2}\left(a^{2}+1\right)}
Factor the expressions that are not already factored in \frac{2a^{2}+b^{2}a^{4}+b^{2}+2b^{2}a^{2}+a^{4}+1}{a^{2}\left(a^{2}-a^{-2}\right)}.
\frac{a+1}{-b^{2}-1}\times \frac{\left(a^{2}+1\right)\left(b^{2}+1\right)}{a^{-2}\left(a-1\right)\left(a+1\right)a^{2}}
Cancel out a^{2}+1 in both numerator and denominator.
\frac{a+1}{-b^{2}-1}\times \frac{\left(a^{2}+1\right)\left(b^{2}+1\right)}{\left(a-1\right)\left(a+1\right)}
Multiply a^{-2} and a^{2} to get 1.
\frac{\left(a+1\right)\left(a^{2}+1\right)\left(b^{2}+1\right)}{\left(-b^{2}-1\right)\left(a-1\right)\left(a+1\right)}
Multiply \frac{a+1}{-b^{2}-1} times \frac{\left(a^{2}+1\right)\left(b^{2}+1\right)}{\left(a-1\right)\left(a+1\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(a+1\right)\left(-b^{2}-1\right)\left(a^{2}+1\right)}{\left(a-1\right)\left(a+1\right)\left(-b^{2}-1\right)}
Extract the negative sign in b^{2}+1.
\frac{-\left(a^{2}+1\right)}{a-1}
Cancel out \left(a+1\right)\left(-b^{2}-1\right) in both numerator and denominator.
\frac{-a^{2}-1}{a-1}
To find the opposite of a^{2}+1, find the opposite of each term.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}