Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a^{3}-b^{3}\right)\left(a+b\right)}{\left(a^{2}+ab+b^{2}\right)\left(a^{2}b-b^{3}\right)}
Divide \frac{a^{3}-b^{3}}{a^{2}+ab+b^{2}} by \frac{a^{2}b-b^{3}}{a+b} by multiplying \frac{a^{3}-b^{3}}{a^{2}+ab+b^{2}} by the reciprocal of \frac{a^{2}b-b^{3}}{a+b}.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+ab+b^{2}\right)}{b\left(a+b\right)\left(a-b\right)\left(a^{2}+ab+b^{2}\right)}
Factor the expressions that are not already factored.
\frac{1}{b}
Cancel out \left(a+b\right)\left(a-b\right)\left(a^{2}+ab+b^{2}\right) in both numerator and denominator.
\frac{\left(a^{3}-b^{3}\right)\left(a+b\right)}{\left(a^{2}+ab+b^{2}\right)\left(a^{2}b-b^{3}\right)}
Divide \frac{a^{3}-b^{3}}{a^{2}+ab+b^{2}} by \frac{a^{2}b-b^{3}}{a+b} by multiplying \frac{a^{3}-b^{3}}{a^{2}+ab+b^{2}} by the reciprocal of \frac{a^{2}b-b^{3}}{a+b}.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+ab+b^{2}\right)}{b\left(a+b\right)\left(a-b\right)\left(a^{2}+ab+b^{2}\right)}
Factor the expressions that are not already factored.
\frac{1}{b}
Cancel out \left(a+b\right)\left(a-b\right)\left(a^{2}+ab+b^{2}\right) in both numerator and denominator.