Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a^{3}-27\right)\left(25a^{2}-1\right)}{\left(5a^{2}-16a+3\right)\left(a^{2}+3a+a\right)}
Divide \frac{a^{3}-27}{5a^{2}-16a+3} by \frac{a^{2}+3a+a}{25a^{2}-1} by multiplying \frac{a^{3}-27}{5a^{2}-16a+3} by the reciprocal of \frac{a^{2}+3a+a}{25a^{2}-1}.
\frac{\left(a^{3}-27\right)\left(25a^{2}-1\right)}{\left(5a^{2}-16a+3\right)\left(a^{2}+4a\right)}
Combine 3a and a to get 4a.
\frac{\left(a-3\right)\left(5a-1\right)\left(5a+1\right)\left(a^{2}+3a+9\right)}{a\left(a-3\right)\left(5a-1\right)\left(a+4\right)}
Factor the expressions that are not already factored.
\frac{\left(5a+1\right)\left(a^{2}+3a+9\right)}{a\left(a+4\right)}
Cancel out \left(a-3\right)\left(5a-1\right) in both numerator and denominator.
\frac{5a^{3}+16a^{2}+48a+9}{a^{2}+4a}
Expand the expression.
\frac{\left(a^{3}-27\right)\left(25a^{2}-1\right)}{\left(5a^{2}-16a+3\right)\left(a^{2}+3a+a\right)}
Divide \frac{a^{3}-27}{5a^{2}-16a+3} by \frac{a^{2}+3a+a}{25a^{2}-1} by multiplying \frac{a^{3}-27}{5a^{2}-16a+3} by the reciprocal of \frac{a^{2}+3a+a}{25a^{2}-1}.
\frac{\left(a^{3}-27\right)\left(25a^{2}-1\right)}{\left(5a^{2}-16a+3\right)\left(a^{2}+4a\right)}
Combine 3a and a to get 4a.
\frac{\left(a-3\right)\left(5a-1\right)\left(5a+1\right)\left(a^{2}+3a+9\right)}{a\left(a-3\right)\left(5a-1\right)\left(a+4\right)}
Factor the expressions that are not already factored.
\frac{\left(5a+1\right)\left(a^{2}+3a+9\right)}{a\left(a+4\right)}
Cancel out \left(a-3\right)\left(5a-1\right) in both numerator and denominator.
\frac{5a^{3}+16a^{2}+48a+9}{a^{2}+4a}
Expand the expression.