Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a^{3}+8\right)\left(1-2ra\right)}{\left(4a^{2}-1\right)\left(2a^{2}-4a+8\right)}\times \frac{6a+3}{4+4a+a^{2}}
Multiply \frac{a^{3}+8}{4a^{2}-1} times \frac{1-2ra}{2a^{2}-4a+8} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a^{3}+8\right)\left(1-2ra\right)\left(6a+3\right)}{\left(4a^{2}-1\right)\left(2a^{2}-4a+8\right)\left(4+4a+a^{2}\right)}
Multiply \frac{\left(a^{3}+8\right)\left(1-2ra\right)}{\left(4a^{2}-1\right)\left(2a^{2}-4a+8\right)} times \frac{6a+3}{4+4a+a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{3\left(a+2\right)\left(2a+1\right)\left(a^{2}-2a+4\right)\left(-2ar+1\right)}{2\left(2a-1\right)\left(2a+1\right)\left(a+2\right)^{2}\left(a^{2}-2a+4\right)}
Factor the expressions that are not already factored.
\frac{3\left(-2ar+1\right)}{2\left(2a-1\right)\left(a+2\right)}
Cancel out \left(a+2\right)\left(2a+1\right)\left(a^{2}-2a+4\right) in both numerator and denominator.
\frac{-6ar+3}{4a^{2}+6a-4}
Expand the expression.
\frac{\left(a^{3}+8\right)\left(1-2ra\right)}{\left(4a^{2}-1\right)\left(2a^{2}-4a+8\right)}\times \frac{6a+3}{4+4a+a^{2}}
Multiply \frac{a^{3}+8}{4a^{2}-1} times \frac{1-2ra}{2a^{2}-4a+8} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a^{3}+8\right)\left(1-2ra\right)\left(6a+3\right)}{\left(4a^{2}-1\right)\left(2a^{2}-4a+8\right)\left(4+4a+a^{2}\right)}
Multiply \frac{\left(a^{3}+8\right)\left(1-2ra\right)}{\left(4a^{2}-1\right)\left(2a^{2}-4a+8\right)} times \frac{6a+3}{4+4a+a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{3\left(a+2\right)\left(2a+1\right)\left(a^{2}-2a+4\right)\left(-2ar+1\right)}{2\left(2a-1\right)\left(2a+1\right)\left(a+2\right)^{2}\left(a^{2}-2a+4\right)}
Factor the expressions that are not already factored.
\frac{3\left(-2ar+1\right)}{2\left(2a-1\right)\left(a+2\right)}
Cancel out \left(a+2\right)\left(2a+1\right)\left(a^{2}-2a+4\right) in both numerator and denominator.
\frac{-6ar+3}{4a^{2}+6a-4}
Expand the expression.