Evaluate
\frac{3\left(1-2ar\right)}{2\left(2a-1\right)\left(a+2\right)}
Expand
-\frac{3\left(2ar-1\right)}{2\left(2a-1\right)\left(a+2\right)}
Share
Copied to clipboard
\frac{\left(a^{3}+8\right)\left(1-2ra\right)}{\left(4a^{2}-1\right)\left(2a^{2}-4a+8\right)}\times \frac{6a+3}{4+4a+a^{2}}
Multiply \frac{a^{3}+8}{4a^{2}-1} times \frac{1-2ra}{2a^{2}-4a+8} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a^{3}+8\right)\left(1-2ra\right)\left(6a+3\right)}{\left(4a^{2}-1\right)\left(2a^{2}-4a+8\right)\left(4+4a+a^{2}\right)}
Multiply \frac{\left(a^{3}+8\right)\left(1-2ra\right)}{\left(4a^{2}-1\right)\left(2a^{2}-4a+8\right)} times \frac{6a+3}{4+4a+a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{3\left(a+2\right)\left(2a+1\right)\left(a^{2}-2a+4\right)\left(-2ar+1\right)}{2\left(2a-1\right)\left(2a+1\right)\left(a+2\right)^{2}\left(a^{2}-2a+4\right)}
Factor the expressions that are not already factored.
\frac{3\left(-2ar+1\right)}{2\left(2a-1\right)\left(a+2\right)}
Cancel out \left(a+2\right)\left(2a+1\right)\left(a^{2}-2a+4\right) in both numerator and denominator.
\frac{-6ar+3}{4a^{2}+6a-4}
Expand the expression.
\frac{\left(a^{3}+8\right)\left(1-2ra\right)}{\left(4a^{2}-1\right)\left(2a^{2}-4a+8\right)}\times \frac{6a+3}{4+4a+a^{2}}
Multiply \frac{a^{3}+8}{4a^{2}-1} times \frac{1-2ra}{2a^{2}-4a+8} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a^{3}+8\right)\left(1-2ra\right)\left(6a+3\right)}{\left(4a^{2}-1\right)\left(2a^{2}-4a+8\right)\left(4+4a+a^{2}\right)}
Multiply \frac{\left(a^{3}+8\right)\left(1-2ra\right)}{\left(4a^{2}-1\right)\left(2a^{2}-4a+8\right)} times \frac{6a+3}{4+4a+a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{3\left(a+2\right)\left(2a+1\right)\left(a^{2}-2a+4\right)\left(-2ar+1\right)}{2\left(2a-1\right)\left(2a+1\right)\left(a+2\right)^{2}\left(a^{2}-2a+4\right)}
Factor the expressions that are not already factored.
\frac{3\left(-2ar+1\right)}{2\left(2a-1\right)\left(a+2\right)}
Cancel out \left(a+2\right)\left(2a+1\right)\left(a^{2}-2a+4\right) in both numerator and denominator.
\frac{-6ar+3}{4a^{2}+6a-4}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}