Evaluate
\frac{a^{2}-3ay-y^{2}}{y\left(a-y\right)}
Expand
-\frac{y^{2}+3ay-a^{2}}{y\left(a-y\right)}
Graph
Share
Copied to clipboard
\frac{\left(y+a\right)\left(-y+a\right)}{y\left(-y+a\right)}-\frac{3a}{a-y}
Factor the expressions that are not already factored in \frac{a^{2}-y^{2}}{ay-y^{2}}.
\frac{y+a}{y}-\frac{3a}{a-y}
Cancel out -y+a in both numerator and denominator.
\frac{\left(y+a\right)\left(-y+a\right)}{y\left(-y+a\right)}-\frac{3ay}{y\left(-y+a\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and a-y is y\left(-y+a\right). Multiply \frac{y+a}{y} times \frac{-y+a}{-y+a}. Multiply \frac{3a}{a-y} times \frac{y}{y}.
\frac{\left(y+a\right)\left(-y+a\right)-3ay}{y\left(-y+a\right)}
Since \frac{\left(y+a\right)\left(-y+a\right)}{y\left(-y+a\right)} and \frac{3ay}{y\left(-y+a\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{ay-y^{2}-ay+a^{2}-3ay}{y\left(-y+a\right)}
Do the multiplications in \left(y+a\right)\left(-y+a\right)-3ay.
\frac{-y^{2}-3ay+a^{2}}{y\left(-y+a\right)}
Combine like terms in ay-y^{2}-ay+a^{2}-3ay.
\frac{-y^{2}-3ay+a^{2}}{-y^{2}+ay}
Expand y\left(-y+a\right).
\frac{\left(y+a\right)\left(-y+a\right)}{y\left(-y+a\right)}-\frac{3a}{a-y}
Factor the expressions that are not already factored in \frac{a^{2}-y^{2}}{ay-y^{2}}.
\frac{y+a}{y}-\frac{3a}{a-y}
Cancel out -y+a in both numerator and denominator.
\frac{\left(y+a\right)\left(-y+a\right)}{y\left(-y+a\right)}-\frac{3ay}{y\left(-y+a\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and a-y is y\left(-y+a\right). Multiply \frac{y+a}{y} times \frac{-y+a}{-y+a}. Multiply \frac{3a}{a-y} times \frac{y}{y}.
\frac{\left(y+a\right)\left(-y+a\right)-3ay}{y\left(-y+a\right)}
Since \frac{\left(y+a\right)\left(-y+a\right)}{y\left(-y+a\right)} and \frac{3ay}{y\left(-y+a\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{ay-y^{2}-ay+a^{2}-3ay}{y\left(-y+a\right)}
Do the multiplications in \left(y+a\right)\left(-y+a\right)-3ay.
\frac{-y^{2}-3ay+a^{2}}{y\left(-y+a\right)}
Combine like terms in ay-y^{2}-ay+a^{2}-3ay.
\frac{-y^{2}-3ay+a^{2}}{-y^{2}+ay}
Expand y\left(-y+a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}