Evaluate
b\left(b-2a\right)
Expand
b^{2}-2ab
Share
Copied to clipboard
\frac{\left(a^{2}-b^{2}\right)\left(a^{2}+2ab\right)}{\left(a+2b\right)\left(b-a\right)}+\frac{a^{3}+b^{3}}{a+b}
Divide \frac{a^{2}-b^{2}}{a+2b} by \frac{b-a}{a^{2}+2ab} by multiplying \frac{a^{2}-b^{2}}{a+2b} by the reciprocal of \frac{b-a}{a^{2}+2ab}.
\frac{a\left(a+b\right)\left(a-b\right)\left(a+2b\right)}{\left(a+2b\right)\left(-a+b\right)}+\frac{a^{3}+b^{3}}{a+b}
Factor the expressions that are not already factored in \frac{\left(a^{2}-b^{2}\right)\left(a^{2}+2ab\right)}{\left(a+2b\right)\left(b-a\right)}.
\frac{-a\left(a+b\right)\left(a+2b\right)\left(-a+b\right)}{\left(a+2b\right)\left(-a+b\right)}+\frac{a^{3}+b^{3}}{a+b}
Extract the negative sign in a-b.
-a\left(a+b\right)+\frac{a^{3}+b^{3}}{a+b}
Cancel out \left(a+2b\right)\left(-a+b\right) in both numerator and denominator.
-a^{2}-ab+\frac{a^{3}+b^{3}}{a+b}
Expand the expression.
-a^{2}-ab+\frac{\left(a+b\right)\left(a^{2}-ab+b^{2}\right)}{a+b}
Factor the expressions that are not already factored in \frac{a^{3}+b^{3}}{a+b}.
-a^{2}-ab+a^{2}-ab+b^{2}
Cancel out a+b in both numerator and denominator.
-ab-ab+b^{2}
Combine -a^{2} and a^{2} to get 0.
-2ab+b^{2}
Combine -ab and -ab to get -2ab.
\frac{\left(a^{2}-b^{2}\right)\left(a^{2}+2ab\right)}{\left(a+2b\right)\left(b-a\right)}+\frac{a^{3}+b^{3}}{a+b}
Divide \frac{a^{2}-b^{2}}{a+2b} by \frac{b-a}{a^{2}+2ab} by multiplying \frac{a^{2}-b^{2}}{a+2b} by the reciprocal of \frac{b-a}{a^{2}+2ab}.
\frac{a\left(a+b\right)\left(a-b\right)\left(a+2b\right)}{\left(a+2b\right)\left(-a+b\right)}+\frac{a^{3}+b^{3}}{a+b}
Factor the expressions that are not already factored in \frac{\left(a^{2}-b^{2}\right)\left(a^{2}+2ab\right)}{\left(a+2b\right)\left(b-a\right)}.
\frac{-a\left(a+b\right)\left(a+2b\right)\left(-a+b\right)}{\left(a+2b\right)\left(-a+b\right)}+\frac{a^{3}+b^{3}}{a+b}
Extract the negative sign in a-b.
-a\left(a+b\right)+\frac{a^{3}+b^{3}}{a+b}
Cancel out \left(a+2b\right)\left(-a+b\right) in both numerator and denominator.
-a^{2}-ab+\frac{a^{3}+b^{3}}{a+b}
Expand the expression.
-a^{2}-ab+\frac{\left(a+b\right)\left(a^{2}-ab+b^{2}\right)}{a+b}
Factor the expressions that are not already factored in \frac{a^{3}+b^{3}}{a+b}.
-a^{2}-ab+a^{2}-ab+b^{2}
Cancel out a+b in both numerator and denominator.
-ab-ab+b^{2}
Combine -a^{2} and a^{2} to get 0.
-2ab+b^{2}
Combine -ab and -ab to get -2ab.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}