Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a^{2}-b^{2}\right)\left(a+3b\right)}{\left(4a^{2}+12ab\right)\left(a-b\right)}
Divide \frac{a^{2}-b^{2}}{4a^{2}+12ab} by \frac{a-b}{a+3b} by multiplying \frac{a^{2}-b^{2}}{4a^{2}+12ab} by the reciprocal of \frac{a-b}{a+3b}.
\frac{\left(a+b\right)\left(a-b\right)\left(a+3b\right)}{4a\left(a-b\right)\left(a+3b\right)}
Factor the expressions that are not already factored.
\frac{a+b}{4a}
Cancel out \left(a-b\right)\left(a+3b\right) in both numerator and denominator.
\frac{\left(a^{2}-b^{2}\right)\left(a+3b\right)}{\left(4a^{2}+12ab\right)\left(a-b\right)}
Divide \frac{a^{2}-b^{2}}{4a^{2}+12ab} by \frac{a-b}{a+3b} by multiplying \frac{a^{2}-b^{2}}{4a^{2}+12ab} by the reciprocal of \frac{a-b}{a+3b}.
\frac{\left(a+b\right)\left(a-b\right)\left(a+3b\right)}{4a\left(a-b\right)\left(a+3b\right)}
Factor the expressions that are not already factored.
\frac{a+b}{4a}
Cancel out \left(a-b\right)\left(a+3b\right) in both numerator and denominator.