Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a^{2}-a-12\right)\left(2a^{2}+9a+4\right)}{\left(2a^{2}+a\right)\left(16-a^{2}\right)}
Divide \frac{a^{2}-a-12}{2a^{2}+a} by \frac{16-a^{2}}{2a^{2}+9a+4} by multiplying \frac{a^{2}-a-12}{2a^{2}+a} by the reciprocal of \frac{16-a^{2}}{2a^{2}+9a+4}.
\frac{\left(a-4\right)\left(a+3\right)\left(a+4\right)\left(2a+1\right)}{a\left(a-4\right)\left(-a-4\right)\left(2a+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(a-4\right)\left(-a-4\right)\left(a+3\right)\left(2a+1\right)}{a\left(a-4\right)\left(-a-4\right)\left(2a+1\right)}
Extract the negative sign in 4+a.
\frac{-\left(a+3\right)}{a}
Cancel out \left(a-4\right)\left(-a-4\right)\left(2a+1\right) in both numerator and denominator.
\frac{-a-3}{a}
Expand the expression.
\frac{\left(a^{2}-a-12\right)\left(2a^{2}+9a+4\right)}{\left(2a^{2}+a\right)\left(16-a^{2}\right)}
Divide \frac{a^{2}-a-12}{2a^{2}+a} by \frac{16-a^{2}}{2a^{2}+9a+4} by multiplying \frac{a^{2}-a-12}{2a^{2}+a} by the reciprocal of \frac{16-a^{2}}{2a^{2}+9a+4}.
\frac{\left(a-4\right)\left(a+3\right)\left(a+4\right)\left(2a+1\right)}{a\left(a-4\right)\left(-a-4\right)\left(2a+1\right)}
Factor the expressions that are not already factored.
\frac{-\left(a-4\right)\left(-a-4\right)\left(a+3\right)\left(2a+1\right)}{a\left(a-4\right)\left(-a-4\right)\left(2a+1\right)}
Extract the negative sign in 4+a.
\frac{-\left(a+3\right)}{a}
Cancel out \left(a-4\right)\left(-a-4\right)\left(2a+1\right) in both numerator and denominator.
\frac{-a-3}{a}
Expand the expression.