Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a^{2}-a}{a^{2}+1}+\frac{2a^{2}}{\left(a-1\right)\left(a^{2}+1\right)}
Factor a^{3}-a^{2}+a-1.
\frac{\left(a^{2}-a\right)\left(a-1\right)}{\left(a-1\right)\left(a^{2}+1\right)}+\frac{2a^{2}}{\left(a-1\right)\left(a^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a^{2}+1 and \left(a-1\right)\left(a^{2}+1\right) is \left(a-1\right)\left(a^{2}+1\right). Multiply \frac{a^{2}-a}{a^{2}+1} times \frac{a-1}{a-1}.
\frac{\left(a^{2}-a\right)\left(a-1\right)+2a^{2}}{\left(a-1\right)\left(a^{2}+1\right)}
Since \frac{\left(a^{2}-a\right)\left(a-1\right)}{\left(a-1\right)\left(a^{2}+1\right)} and \frac{2a^{2}}{\left(a-1\right)\left(a^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{a^{3}-a^{2}-a^{2}+a+2a^{2}}{\left(a-1\right)\left(a^{2}+1\right)}
Do the multiplications in \left(a^{2}-a\right)\left(a-1\right)+2a^{2}.
\frac{a^{3}+a}{\left(a-1\right)\left(a^{2}+1\right)}
Combine like terms in a^{3}-a^{2}-a^{2}+a+2a^{2}.
\frac{a\left(a^{2}+1\right)}{\left(a-1\right)\left(a^{2}+1\right)}
Factor the expressions that are not already factored in \frac{a^{3}+a}{\left(a-1\right)\left(a^{2}+1\right)}.
\frac{a}{a-1}
Cancel out a^{2}+1 in both numerator and denominator.
\frac{a^{2}-a}{a^{2}+1}+\frac{2a^{2}}{\left(a-1\right)\left(a^{2}+1\right)}
Factor a^{3}-a^{2}+a-1.
\frac{\left(a^{2}-a\right)\left(a-1\right)}{\left(a-1\right)\left(a^{2}+1\right)}+\frac{2a^{2}}{\left(a-1\right)\left(a^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a^{2}+1 and \left(a-1\right)\left(a^{2}+1\right) is \left(a-1\right)\left(a^{2}+1\right). Multiply \frac{a^{2}-a}{a^{2}+1} times \frac{a-1}{a-1}.
\frac{\left(a^{2}-a\right)\left(a-1\right)+2a^{2}}{\left(a-1\right)\left(a^{2}+1\right)}
Since \frac{\left(a^{2}-a\right)\left(a-1\right)}{\left(a-1\right)\left(a^{2}+1\right)} and \frac{2a^{2}}{\left(a-1\right)\left(a^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{a^{3}-a^{2}-a^{2}+a+2a^{2}}{\left(a-1\right)\left(a^{2}+1\right)}
Do the multiplications in \left(a^{2}-a\right)\left(a-1\right)+2a^{2}.
\frac{a^{3}+a}{\left(a-1\right)\left(a^{2}+1\right)}
Combine like terms in a^{3}-a^{2}-a^{2}+a+2a^{2}.
\frac{a\left(a^{2}+1\right)}{\left(a-1\right)\left(a^{2}+1\right)}
Factor the expressions that are not already factored in \frac{a^{3}+a}{\left(a-1\right)\left(a^{2}+1\right)}.
\frac{a}{a-1}
Cancel out a^{2}+1 in both numerator and denominator.