Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a^{2}-9\right)\times 6a^{-1}}{\left(2a^{2}+1\right)\left(a-3\right)}+\frac{6a-1}{a+3}
Multiply \frac{a^{2}-9}{2a^{2}+1} times \frac{6a^{-1}}{a-3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a^{2}-9\right)\times 6a^{-1}\left(a+3\right)}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}+\frac{\left(6a-1\right)\left(a-3\right)\left(2a^{2}+1\right)}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(2a^{2}+1\right)\left(a-3\right) and a+3 is \left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right). Multiply \frac{\left(a^{2}-9\right)\times 6a^{-1}}{\left(2a^{2}+1\right)\left(a-3\right)} times \frac{a+3}{a+3}. Multiply \frac{6a-1}{a+3} times \frac{\left(a-3\right)\left(2a^{2}+1\right)}{\left(a-3\right)\left(2a^{2}+1\right)}.
\frac{\left(a^{2}-9\right)\times 6a^{-1}\left(a+3\right)+\left(6a-1\right)\left(a-3\right)\left(2a^{2}+1\right)}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}
Since \frac{\left(a^{2}-9\right)\times 6a^{-1}\left(a+3\right)}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)} and \frac{\left(6a-1\right)\left(a-3\right)\left(2a^{2}+1\right)}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{6a^{2}+18a-54-162\times \frac{1}{a}+12a^{4}+6a^{2}-36a^{3}-18a-2a^{3}-a+6a^{2}+3}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}
Do the multiplications in \left(a^{2}-9\right)\times 6a^{-1}\left(a+3\right)+\left(6a-1\right)\left(a-3\right)\left(2a^{2}+1\right).
\frac{18a^{2}-a-51-162\times \frac{1}{a}+12a^{4}-38a^{3}}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}
Combine like terms in 6a^{2}+18a-54-162\times \frac{1}{a}+12a^{4}+6a^{2}-36a^{3}-18a-2a^{3}-a+6a^{2}+3.
\frac{18a^{2}-a-51-162\times \frac{1}{a}+12a^{4}-38a^{3}}{2a^{4}-17a^{2}-9}
Expand \left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right).
\frac{18a^{2}-a-51+\frac{-162}{a}+12a^{4}-38a^{3}}{2a^{4}-17a^{2}-9}
Express -162\times \frac{1}{a} as a single fraction.
\frac{\frac{\left(18a^{2}-a-51+12a^{4}-38a^{3}\right)a}{a}+\frac{-162}{a}}{2a^{4}-17a^{2}-9}
To add or subtract expressions, expand them to make their denominators the same. Multiply 18a^{2}-a-51+12a^{4}-38a^{3} times \frac{a}{a}.
\frac{\frac{\left(18a^{2}-a-51+12a^{4}-38a^{3}\right)a-162}{a}}{2a^{4}-17a^{2}-9}
Since \frac{\left(18a^{2}-a-51+12a^{4}-38a^{3}\right)a}{a} and \frac{-162}{a} have the same denominator, add them by adding their numerators.
\frac{\frac{18a^{3}-a^{2}-51a+12a^{5}-38a^{4}-162}{a}}{2a^{4}-17a^{2}-9}
Do the multiplications in \left(18a^{2}-a-51+12a^{4}-38a^{3}\right)a-162.
\frac{18a^{3}-a^{2}-51a+12a^{5}-38a^{4}-162}{a\left(2a^{4}-17a^{2}-9\right)}
Express \frac{\frac{18a^{3}-a^{2}-51a+12a^{5}-38a^{4}-162}{a}}{2a^{4}-17a^{2}-9} as a single fraction.
\frac{3\left(a-3\right)\left(4a^{4}-\frac{2}{3}a^{3}+4a^{2}+\frac{35}{3}a+18\right)}{a\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}
Factor the expressions that are not already factored.
\frac{3\left(4a^{4}-\frac{2}{3}a^{3}+4a^{2}+\frac{35}{3}a+18\right)}{a\left(a+3\right)\left(2a^{2}+1\right)}
Cancel out a-3 in both numerator and denominator.
\frac{12a^{4}-2a^{3}+12a^{2}+35a+54}{2a^{4}+6a^{3}+a^{2}+3a}
Expand the expression.
\frac{\left(a^{2}-9\right)\times 6a^{-1}}{\left(2a^{2}+1\right)\left(a-3\right)}+\frac{6a-1}{a+3}
Multiply \frac{a^{2}-9}{2a^{2}+1} times \frac{6a^{-1}}{a-3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a^{2}-9\right)\times 6a^{-1}\left(a+3\right)}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}+\frac{\left(6a-1\right)\left(a-3\right)\left(2a^{2}+1\right)}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(2a^{2}+1\right)\left(a-3\right) and a+3 is \left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right). Multiply \frac{\left(a^{2}-9\right)\times 6a^{-1}}{\left(2a^{2}+1\right)\left(a-3\right)} times \frac{a+3}{a+3}. Multiply \frac{6a-1}{a+3} times \frac{\left(a-3\right)\left(2a^{2}+1\right)}{\left(a-3\right)\left(2a^{2}+1\right)}.
\frac{\left(a^{2}-9\right)\times 6a^{-1}\left(a+3\right)+\left(6a-1\right)\left(a-3\right)\left(2a^{2}+1\right)}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}
Since \frac{\left(a^{2}-9\right)\times 6a^{-1}\left(a+3\right)}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)} and \frac{\left(6a-1\right)\left(a-3\right)\left(2a^{2}+1\right)}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{6a^{2}+18a-54-162\times \frac{1}{a}+12a^{4}+6a^{2}-36a^{3}-18a-2a^{3}-a+6a^{2}+3}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}
Do the multiplications in \left(a^{2}-9\right)\times 6a^{-1}\left(a+3\right)+\left(6a-1\right)\left(a-3\right)\left(2a^{2}+1\right).
\frac{18a^{2}-a-51-162\times \frac{1}{a}+12a^{4}-38a^{3}}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}
Combine like terms in 6a^{2}+18a-54-162\times \frac{1}{a}+12a^{4}+6a^{2}-36a^{3}-18a-2a^{3}-a+6a^{2}+3.
\frac{18a^{2}-a-51-162\times \frac{1}{a}+12a^{4}-38a^{3}}{2a^{4}-17a^{2}-9}
Expand \left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right).
\frac{18a^{2}-a-51+\frac{-162}{a}+12a^{4}-38a^{3}}{2a^{4}-17a^{2}-9}
Express -162\times \frac{1}{a} as a single fraction.
\frac{\frac{\left(18a^{2}-a-51+12a^{4}-38a^{3}\right)a}{a}+\frac{-162}{a}}{2a^{4}-17a^{2}-9}
To add or subtract expressions, expand them to make their denominators the same. Multiply 18a^{2}-a-51+12a^{4}-38a^{3} times \frac{a}{a}.
\frac{\frac{\left(18a^{2}-a-51+12a^{4}-38a^{3}\right)a-162}{a}}{2a^{4}-17a^{2}-9}
Since \frac{\left(18a^{2}-a-51+12a^{4}-38a^{3}\right)a}{a} and \frac{-162}{a} have the same denominator, add them by adding their numerators.
\frac{\frac{18a^{3}-a^{2}-51a+12a^{5}-38a^{4}-162}{a}}{2a^{4}-17a^{2}-9}
Do the multiplications in \left(18a^{2}-a-51+12a^{4}-38a^{3}\right)a-162.
\frac{18a^{3}-a^{2}-51a+12a^{5}-38a^{4}-162}{a\left(2a^{4}-17a^{2}-9\right)}
Express \frac{\frac{18a^{3}-a^{2}-51a+12a^{5}-38a^{4}-162}{a}}{2a^{4}-17a^{2}-9} as a single fraction.
\frac{3\left(a-3\right)\left(4a^{4}-\frac{2}{3}a^{3}+4a^{2}+\frac{35}{3}a+18\right)}{a\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}
Factor the expressions that are not already factored.
\frac{3\left(4a^{4}-\frac{2}{3}a^{3}+4a^{2}+\frac{35}{3}a+18\right)}{a\left(a+3\right)\left(2a^{2}+1\right)}
Cancel out a-3 in both numerator and denominator.
\frac{12a^{4}-2a^{3}+12a^{2}+35a+54}{2a^{4}+6a^{3}+a^{2}+3a}
Expand the expression.