Evaluate
\frac{12a^{4}-2a^{3}+12a^{2}+35a+54}{a\left(a+3\right)\left(2a^{2}+1\right)}
Expand
\frac{12a^{4}-2a^{3}+12a^{2}+35a+54}{a\left(a+3\right)\left(2a^{2}+1\right)}
Share
Copied to clipboard
\frac{\left(a^{2}-9\right)\times 6a^{-1}}{\left(2a^{2}+1\right)\left(a-3\right)}+\frac{6a-1}{a+3}
Multiply \frac{a^{2}-9}{2a^{2}+1} times \frac{6a^{-1}}{a-3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a^{2}-9\right)\times 6a^{-1}\left(a+3\right)}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}+\frac{\left(6a-1\right)\left(a-3\right)\left(2a^{2}+1\right)}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(2a^{2}+1\right)\left(a-3\right) and a+3 is \left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right). Multiply \frac{\left(a^{2}-9\right)\times 6a^{-1}}{\left(2a^{2}+1\right)\left(a-3\right)} times \frac{a+3}{a+3}. Multiply \frac{6a-1}{a+3} times \frac{\left(a-3\right)\left(2a^{2}+1\right)}{\left(a-3\right)\left(2a^{2}+1\right)}.
\frac{\left(a^{2}-9\right)\times 6a^{-1}\left(a+3\right)+\left(6a-1\right)\left(a-3\right)\left(2a^{2}+1\right)}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}
Since \frac{\left(a^{2}-9\right)\times 6a^{-1}\left(a+3\right)}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)} and \frac{\left(6a-1\right)\left(a-3\right)\left(2a^{2}+1\right)}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{6a^{2}+18a-54-162\times \frac{1}{a}+12a^{4}+6a^{2}-36a^{3}-18a-2a^{3}-a+6a^{2}+3}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}
Do the multiplications in \left(a^{2}-9\right)\times 6a^{-1}\left(a+3\right)+\left(6a-1\right)\left(a-3\right)\left(2a^{2}+1\right).
\frac{18a^{2}-a-51-162\times \frac{1}{a}+12a^{4}-38a^{3}}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}
Combine like terms in 6a^{2}+18a-54-162\times \frac{1}{a}+12a^{4}+6a^{2}-36a^{3}-18a-2a^{3}-a+6a^{2}+3.
\frac{18a^{2}-a-51-162\times \frac{1}{a}+12a^{4}-38a^{3}}{2a^{4}-17a^{2}-9}
Expand \left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right).
\frac{18a^{2}-a-51+\frac{-162}{a}+12a^{4}-38a^{3}}{2a^{4}-17a^{2}-9}
Express -162\times \frac{1}{a} as a single fraction.
\frac{\frac{\left(18a^{2}-a-51+12a^{4}-38a^{3}\right)a}{a}+\frac{-162}{a}}{2a^{4}-17a^{2}-9}
To add or subtract expressions, expand them to make their denominators the same. Multiply 18a^{2}-a-51+12a^{4}-38a^{3} times \frac{a}{a}.
\frac{\frac{\left(18a^{2}-a-51+12a^{4}-38a^{3}\right)a-162}{a}}{2a^{4}-17a^{2}-9}
Since \frac{\left(18a^{2}-a-51+12a^{4}-38a^{3}\right)a}{a} and \frac{-162}{a} have the same denominator, add them by adding their numerators.
\frac{\frac{18a^{3}-a^{2}-51a+12a^{5}-38a^{4}-162}{a}}{2a^{4}-17a^{2}-9}
Do the multiplications in \left(18a^{2}-a-51+12a^{4}-38a^{3}\right)a-162.
\frac{18a^{3}-a^{2}-51a+12a^{5}-38a^{4}-162}{a\left(2a^{4}-17a^{2}-9\right)}
Express \frac{\frac{18a^{3}-a^{2}-51a+12a^{5}-38a^{4}-162}{a}}{2a^{4}-17a^{2}-9} as a single fraction.
\frac{3\left(a-3\right)\left(4a^{4}-\frac{2}{3}a^{3}+4a^{2}+\frac{35}{3}a+18\right)}{a\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}
Factor the expressions that are not already factored.
\frac{3\left(4a^{4}-\frac{2}{3}a^{3}+4a^{2}+\frac{35}{3}a+18\right)}{a\left(a+3\right)\left(2a^{2}+1\right)}
Cancel out a-3 in both numerator and denominator.
\frac{12a^{4}-2a^{3}+12a^{2}+35a+54}{2a^{4}+6a^{3}+a^{2}+3a}
Expand the expression.
\frac{\left(a^{2}-9\right)\times 6a^{-1}}{\left(2a^{2}+1\right)\left(a-3\right)}+\frac{6a-1}{a+3}
Multiply \frac{a^{2}-9}{2a^{2}+1} times \frac{6a^{-1}}{a-3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a^{2}-9\right)\times 6a^{-1}\left(a+3\right)}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}+\frac{\left(6a-1\right)\left(a-3\right)\left(2a^{2}+1\right)}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(2a^{2}+1\right)\left(a-3\right) and a+3 is \left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right). Multiply \frac{\left(a^{2}-9\right)\times 6a^{-1}}{\left(2a^{2}+1\right)\left(a-3\right)} times \frac{a+3}{a+3}. Multiply \frac{6a-1}{a+3} times \frac{\left(a-3\right)\left(2a^{2}+1\right)}{\left(a-3\right)\left(2a^{2}+1\right)}.
\frac{\left(a^{2}-9\right)\times 6a^{-1}\left(a+3\right)+\left(6a-1\right)\left(a-3\right)\left(2a^{2}+1\right)}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}
Since \frac{\left(a^{2}-9\right)\times 6a^{-1}\left(a+3\right)}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)} and \frac{\left(6a-1\right)\left(a-3\right)\left(2a^{2}+1\right)}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{6a^{2}+18a-54-162\times \frac{1}{a}+12a^{4}+6a^{2}-36a^{3}-18a-2a^{3}-a+6a^{2}+3}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}
Do the multiplications in \left(a^{2}-9\right)\times 6a^{-1}\left(a+3\right)+\left(6a-1\right)\left(a-3\right)\left(2a^{2}+1\right).
\frac{18a^{2}-a-51-162\times \frac{1}{a}+12a^{4}-38a^{3}}{\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}
Combine like terms in 6a^{2}+18a-54-162\times \frac{1}{a}+12a^{4}+6a^{2}-36a^{3}-18a-2a^{3}-a+6a^{2}+3.
\frac{18a^{2}-a-51-162\times \frac{1}{a}+12a^{4}-38a^{3}}{2a^{4}-17a^{2}-9}
Expand \left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right).
\frac{18a^{2}-a-51+\frac{-162}{a}+12a^{4}-38a^{3}}{2a^{4}-17a^{2}-9}
Express -162\times \frac{1}{a} as a single fraction.
\frac{\frac{\left(18a^{2}-a-51+12a^{4}-38a^{3}\right)a}{a}+\frac{-162}{a}}{2a^{4}-17a^{2}-9}
To add or subtract expressions, expand them to make their denominators the same. Multiply 18a^{2}-a-51+12a^{4}-38a^{3} times \frac{a}{a}.
\frac{\frac{\left(18a^{2}-a-51+12a^{4}-38a^{3}\right)a-162}{a}}{2a^{4}-17a^{2}-9}
Since \frac{\left(18a^{2}-a-51+12a^{4}-38a^{3}\right)a}{a} and \frac{-162}{a} have the same denominator, add them by adding their numerators.
\frac{\frac{18a^{3}-a^{2}-51a+12a^{5}-38a^{4}-162}{a}}{2a^{4}-17a^{2}-9}
Do the multiplications in \left(18a^{2}-a-51+12a^{4}-38a^{3}\right)a-162.
\frac{18a^{3}-a^{2}-51a+12a^{5}-38a^{4}-162}{a\left(2a^{4}-17a^{2}-9\right)}
Express \frac{\frac{18a^{3}-a^{2}-51a+12a^{5}-38a^{4}-162}{a}}{2a^{4}-17a^{2}-9} as a single fraction.
\frac{3\left(a-3\right)\left(4a^{4}-\frac{2}{3}a^{3}+4a^{2}+\frac{35}{3}a+18\right)}{a\left(a-3\right)\left(a+3\right)\left(2a^{2}+1\right)}
Factor the expressions that are not already factored.
\frac{3\left(4a^{4}-\frac{2}{3}a^{3}+4a^{2}+\frac{35}{3}a+18\right)}{a\left(a+3\right)\left(2a^{2}+1\right)}
Cancel out a-3 in both numerator and denominator.
\frac{12a^{4}-2a^{3}+12a^{2}+35a+54}{2a^{4}+6a^{3}+a^{2}+3a}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}