Evaluate
-\frac{2}{a-2}
Expand
-\frac{2}{a-2}
Share
Copied to clipboard
\frac{\left(a^{2}-6a+9\right)\left(a+2\right)}{\left(a^{2}-4\right)\left(a-3\right)}-\frac{a-1}{a-2}
Multiply \frac{a^{2}-6a+9}{a^{2}-4} times \frac{a+2}{a-3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a^{2}-6a+9\right)\left(a+2\right)}{\left(a-3\right)\left(a-2\right)\left(a+2\right)}-\frac{a-1}{a-2}
Factor \left(a^{2}-4\right)\left(a-3\right).
\frac{\left(a^{2}-6a+9\right)\left(a+2\right)}{\left(a-3\right)\left(a-2\right)\left(a+2\right)}-\frac{\left(a-1\right)\left(a-3\right)\left(a+2\right)}{\left(a-3\right)\left(a-2\right)\left(a+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-3\right)\left(a-2\right)\left(a+2\right) and a-2 is \left(a-3\right)\left(a-2\right)\left(a+2\right). Multiply \frac{a-1}{a-2} times \frac{\left(a-3\right)\left(a+2\right)}{\left(a-3\right)\left(a+2\right)}.
\frac{\left(a^{2}-6a+9\right)\left(a+2\right)-\left(a-1\right)\left(a-3\right)\left(a+2\right)}{\left(a-3\right)\left(a-2\right)\left(a+2\right)}
Since \frac{\left(a^{2}-6a+9\right)\left(a+2\right)}{\left(a-3\right)\left(a-2\right)\left(a+2\right)} and \frac{\left(a-1\right)\left(a-3\right)\left(a+2\right)}{\left(a-3\right)\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{3}+2a^{2}-6a^{2}-12a+9a+18-a^{3}+a^{2}+6a+a^{2}-a-6}{\left(a-3\right)\left(a-2\right)\left(a+2\right)}
Do the multiplications in \left(a^{2}-6a+9\right)\left(a+2\right)-\left(a-1\right)\left(a-3\right)\left(a+2\right).
\frac{-2a^{2}+2a+12}{\left(a-3\right)\left(a-2\right)\left(a+2\right)}
Combine like terms in a^{3}+2a^{2}-6a^{2}-12a+9a+18-a^{3}+a^{2}+6a+a^{2}-a-6.
\frac{2\left(a-3\right)\left(-a-2\right)}{\left(a-3\right)\left(a-2\right)\left(a+2\right)}
Factor the expressions that are not already factored in \frac{-2a^{2}+2a+12}{\left(a-3\right)\left(a-2\right)\left(a+2\right)}.
\frac{-2\left(a-3\right)\left(a+2\right)}{\left(a-3\right)\left(a-2\right)\left(a+2\right)}
Extract the negative sign in -2-a.
\frac{-2}{a-2}
Cancel out \left(a-3\right)\left(a+2\right) in both numerator and denominator.
\frac{\left(a^{2}-6a+9\right)\left(a+2\right)}{\left(a^{2}-4\right)\left(a-3\right)}-\frac{a-1}{a-2}
Multiply \frac{a^{2}-6a+9}{a^{2}-4} times \frac{a+2}{a-3} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a^{2}-6a+9\right)\left(a+2\right)}{\left(a-3\right)\left(a-2\right)\left(a+2\right)}-\frac{a-1}{a-2}
Factor \left(a^{2}-4\right)\left(a-3\right).
\frac{\left(a^{2}-6a+9\right)\left(a+2\right)}{\left(a-3\right)\left(a-2\right)\left(a+2\right)}-\frac{\left(a-1\right)\left(a-3\right)\left(a+2\right)}{\left(a-3\right)\left(a-2\right)\left(a+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-3\right)\left(a-2\right)\left(a+2\right) and a-2 is \left(a-3\right)\left(a-2\right)\left(a+2\right). Multiply \frac{a-1}{a-2} times \frac{\left(a-3\right)\left(a+2\right)}{\left(a-3\right)\left(a+2\right)}.
\frac{\left(a^{2}-6a+9\right)\left(a+2\right)-\left(a-1\right)\left(a-3\right)\left(a+2\right)}{\left(a-3\right)\left(a-2\right)\left(a+2\right)}
Since \frac{\left(a^{2}-6a+9\right)\left(a+2\right)}{\left(a-3\right)\left(a-2\right)\left(a+2\right)} and \frac{\left(a-1\right)\left(a-3\right)\left(a+2\right)}{\left(a-3\right)\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{3}+2a^{2}-6a^{2}-12a+9a+18-a^{3}+a^{2}+6a+a^{2}-a-6}{\left(a-3\right)\left(a-2\right)\left(a+2\right)}
Do the multiplications in \left(a^{2}-6a+9\right)\left(a+2\right)-\left(a-1\right)\left(a-3\right)\left(a+2\right).
\frac{-2a^{2}+2a+12}{\left(a-3\right)\left(a-2\right)\left(a+2\right)}
Combine like terms in a^{3}+2a^{2}-6a^{2}-12a+9a+18-a^{3}+a^{2}+6a+a^{2}-a-6.
\frac{2\left(a-3\right)\left(-a-2\right)}{\left(a-3\right)\left(a-2\right)\left(a+2\right)}
Factor the expressions that are not already factored in \frac{-2a^{2}+2a+12}{\left(a-3\right)\left(a-2\right)\left(a+2\right)}.
\frac{-2\left(a-3\right)\left(a+2\right)}{\left(a-3\right)\left(a-2\right)\left(a+2\right)}
Extract the negative sign in -2-a.
\frac{-2}{a-2}
Cancel out \left(a-3\right)\left(a+2\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}