Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a^{2}-6a+5\right)\left(a^{3}-5a-24\right)}{\left(a^{2}-15a+5b\right)\left(a^{2}+2a-35\right)}
Divide \frac{a^{2}-6a+5}{a^{2}-15a+5b} by \frac{a^{2}+2a-35}{a^{3}-5a-24} by multiplying \frac{a^{2}-6a+5}{a^{2}-15a+5b} by the reciprocal of \frac{a^{2}+2a-35}{a^{3}-5a-24}.
\frac{\left(a-5\right)\left(a-1\right)\left(a^{3}-5a-24\right)}{\left(a-5\right)\left(a+7\right)\left(a^{2}-15a+5b\right)}
Factor the expressions that are not already factored.
\frac{\left(a-1\right)\left(a^{3}-5a-24\right)}{\left(a+7\right)\left(a^{2}-15a+5b\right)}
Cancel out a-5 in both numerator and denominator.
\frac{a^{4}-a^{3}-5a^{2}-19a+24}{a^{3}-8a^{2}+5ab-105a+35b}
Expand the expression.
\frac{\left(a^{2}-6a+5\right)\left(a^{3}-5a-24\right)}{\left(a^{2}-15a+5b\right)\left(a^{2}+2a-35\right)}
Divide \frac{a^{2}-6a+5}{a^{2}-15a+5b} by \frac{a^{2}+2a-35}{a^{3}-5a-24} by multiplying \frac{a^{2}-6a+5}{a^{2}-15a+5b} by the reciprocal of \frac{a^{2}+2a-35}{a^{3}-5a-24}.
\frac{\left(a-5\right)\left(a-1\right)\left(a^{3}-5a-24\right)}{\left(a-5\right)\left(a+7\right)\left(a^{2}-15a+5b\right)}
Factor the expressions that are not already factored.
\frac{\left(a-1\right)\left(a^{3}-5a-24\right)}{\left(a+7\right)\left(a^{2}-15a+5b\right)}
Cancel out a-5 in both numerator and denominator.
\frac{a^{4}-a^{3}-5a^{2}-19a+24}{a^{3}-8a^{2}+5ab-105a+35b}
Expand the expression.