Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a^{2}-5a\right)\left(b^{2}-1\right)}{\left(b-b^{2}\right)\left(a^{2}+6a-55\right)}\times \frac{ab^{2}+11b^{2}}{ax+3a}
Multiply \frac{a^{2}-5a}{b-b^{2}} times \frac{b^{2}-1}{a^{2}+6a-55} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a^{2}-5a\right)\left(b^{2}-1\right)\left(ab^{2}+11b^{2}\right)}{\left(b-b^{2}\right)\left(a^{2}+6a-55\right)\left(ax+3a\right)}
Multiply \frac{\left(a^{2}-5a\right)\left(b^{2}-1\right)}{\left(b-b^{2}\right)\left(a^{2}+6a-55\right)} times \frac{ab^{2}+11b^{2}}{ax+3a} by multiplying numerator times numerator and denominator times denominator.
\frac{a\left(a-5\right)\left(b-1\right)\left(a+11\right)\left(b+1\right)b^{2}}{ab\left(a-5\right)\left(a+11\right)\left(x+3\right)\left(-b+1\right)}
Factor the expressions that are not already factored.
\frac{-a\left(a-5\right)\left(a+11\right)\left(b+1\right)\left(-b+1\right)b^{2}}{ab\left(a-5\right)\left(a+11\right)\left(x+3\right)\left(-b+1\right)}
Extract the negative sign in -1+b.
\frac{-b\left(b+1\right)}{x+3}
Cancel out ab\left(a-5\right)\left(a+11\right)\left(-b+1\right) in both numerator and denominator.
\frac{-b^{2}-b}{x+3}
Expand the expression.
\frac{\left(a^{2}-5a\right)\left(b^{2}-1\right)}{\left(b-b^{2}\right)\left(a^{2}+6a-55\right)}\times \frac{ab^{2}+11b^{2}}{ax+3a}
Multiply \frac{a^{2}-5a}{b-b^{2}} times \frac{b^{2}-1}{a^{2}+6a-55} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a^{2}-5a\right)\left(b^{2}-1\right)\left(ab^{2}+11b^{2}\right)}{\left(b-b^{2}\right)\left(a^{2}+6a-55\right)\left(ax+3a\right)}
Multiply \frac{\left(a^{2}-5a\right)\left(b^{2}-1\right)}{\left(b-b^{2}\right)\left(a^{2}+6a-55\right)} times \frac{ab^{2}+11b^{2}}{ax+3a} by multiplying numerator times numerator and denominator times denominator.
\frac{a\left(a-5\right)\left(b-1\right)\left(a+11\right)\left(b+1\right)b^{2}}{ab\left(a-5\right)\left(a+11\right)\left(x+3\right)\left(-b+1\right)}
Factor the expressions that are not already factored.
\frac{-a\left(a-5\right)\left(a+11\right)\left(b+1\right)\left(-b+1\right)b^{2}}{ab\left(a-5\right)\left(a+11\right)\left(x+3\right)\left(-b+1\right)}
Extract the negative sign in -1+b.
\frac{-b\left(b+1\right)}{x+3}
Cancel out ab\left(a-5\right)\left(a+11\right)\left(-b+1\right) in both numerator and denominator.
\frac{-b^{2}-b}{x+3}
Expand the expression.