Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10}{a+1}+\frac{\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
To add or subtract expressions, expand them to make their denominators the same. Multiply -a-1 times \frac{a+1}{a+1}.
\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10+\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
Since \frac{2a+10}{a+1} and \frac{\left(-a-1\right)\left(a+1\right)}{a+1} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10-a^{2}-a-a-1}{a+1}}+\frac{1}{a+3}
Do the multiplications in 2a+10+\left(-a-1\right)\left(a+1\right).
\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{9-a^{2}}{a+1}}+\frac{1}{a+3}
Combine like terms in 2a+10-a^{2}-a-a-1.
\frac{\left(a^{2}-5a+6\right)\left(a+1\right)}{\left(a^{2}+7a+6\right)\left(9-a^{2}\right)}+\frac{1}{a+3}
Divide \frac{a^{2}-5a+6}{a^{2}+7a+6} by \frac{9-a^{2}}{a+1} by multiplying \frac{a^{2}-5a+6}{a^{2}+7a+6} by the reciprocal of \frac{9-a^{2}}{a+1}.
\frac{\left(a-3\right)\left(a-2\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(a+1\right)\left(a+6\right)}+\frac{1}{a+3}
Factor the expressions that are not already factored in \frac{\left(a^{2}-5a+6\right)\left(a+1\right)}{\left(a^{2}+7a+6\right)\left(9-a^{2}\right)}.
\frac{a-2}{\left(-a-3\right)\left(a+6\right)}+\frac{1}{a+3}
Cancel out \left(a-3\right)\left(a+1\right) in both numerator and denominator.
\frac{-\left(a-2\right)}{\left(a+3\right)\left(a+6\right)}+\frac{a+6}{\left(a+3\right)\left(a+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(-a-3\right)\left(a+6\right) and a+3 is \left(a+3\right)\left(a+6\right). Multiply \frac{a-2}{\left(-a-3\right)\left(a+6\right)} times \frac{-1}{-1}. Multiply \frac{1}{a+3} times \frac{a+6}{a+6}.
\frac{-\left(a-2\right)+a+6}{\left(a+3\right)\left(a+6\right)}
Since \frac{-\left(a-2\right)}{\left(a+3\right)\left(a+6\right)} and \frac{a+6}{\left(a+3\right)\left(a+6\right)} have the same denominator, add them by adding their numerators.
\frac{-a+2+a+6}{\left(a+3\right)\left(a+6\right)}
Do the multiplications in -\left(a-2\right)+a+6.
\frac{8}{\left(a+3\right)\left(a+6\right)}
Combine like terms in -a+2+a+6.
\frac{8}{a^{2}+9a+18}
Expand \left(a+3\right)\left(a+6\right).
\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10}{a+1}+\frac{\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
To add or subtract expressions, expand them to make their denominators the same. Multiply -a-1 times \frac{a+1}{a+1}.
\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10+\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
Since \frac{2a+10}{a+1} and \frac{\left(-a-1\right)\left(a+1\right)}{a+1} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10-a^{2}-a-a-1}{a+1}}+\frac{1}{a+3}
Do the multiplications in 2a+10+\left(-a-1\right)\left(a+1\right).
\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{9-a^{2}}{a+1}}+\frac{1}{a+3}
Combine like terms in 2a+10-a^{2}-a-a-1.
\frac{\left(a^{2}-5a+6\right)\left(a+1\right)}{\left(a^{2}+7a+6\right)\left(9-a^{2}\right)}+\frac{1}{a+3}
Divide \frac{a^{2}-5a+6}{a^{2}+7a+6} by \frac{9-a^{2}}{a+1} by multiplying \frac{a^{2}-5a+6}{a^{2}+7a+6} by the reciprocal of \frac{9-a^{2}}{a+1}.
\frac{\left(a-3\right)\left(a-2\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(a+1\right)\left(a+6\right)}+\frac{1}{a+3}
Factor the expressions that are not already factored in \frac{\left(a^{2}-5a+6\right)\left(a+1\right)}{\left(a^{2}+7a+6\right)\left(9-a^{2}\right)}.
\frac{a-2}{\left(-a-3\right)\left(a+6\right)}+\frac{1}{a+3}
Cancel out \left(a-3\right)\left(a+1\right) in both numerator and denominator.
\frac{-\left(a-2\right)}{\left(a+3\right)\left(a+6\right)}+\frac{a+6}{\left(a+3\right)\left(a+6\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(-a-3\right)\left(a+6\right) and a+3 is \left(a+3\right)\left(a+6\right). Multiply \frac{a-2}{\left(-a-3\right)\left(a+6\right)} times \frac{-1}{-1}. Multiply \frac{1}{a+3} times \frac{a+6}{a+6}.
\frac{-\left(a-2\right)+a+6}{\left(a+3\right)\left(a+6\right)}
Since \frac{-\left(a-2\right)}{\left(a+3\right)\left(a+6\right)} and \frac{a+6}{\left(a+3\right)\left(a+6\right)} have the same denominator, add them by adding their numerators.
\frac{-a+2+a+6}{\left(a+3\right)\left(a+6\right)}
Do the multiplications in -\left(a-2\right)+a+6.
\frac{8}{\left(a+3\right)\left(a+6\right)}
Combine like terms in -a+2+a+6.
\frac{8}{a^{2}+9a+18}
Expand \left(a+3\right)\left(a+6\right).