Evaluate
\frac{4-a}{9}
Expand
\frac{4-a}{9}
Share
Copied to clipboard
\frac{a^{2}-4a+16}{a^{2}-16}\times \frac{a^{3}-4a^{2}-16a+64}{-9a^{2}+36a-144}
Use the distributive property to multiply a+4 by a^{2}-8a+16 and combine like terms.
\frac{\left(a^{2}-4a+16\right)\left(a^{3}-4a^{2}-16a+64\right)}{\left(a^{2}-16\right)\left(-9a^{2}+36a-144\right)}
Multiply \frac{a^{2}-4a+16}{a^{2}-16} times \frac{a^{3}-4a^{2}-16a+64}{-9a^{2}+36a-144} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a+4\right)\left(a-4\right)^{2}\left(a^{2}-4a+16\right)}{9\left(a-4\right)\left(a+4\right)\left(-a^{2}+4a-16\right)}
Factor the expressions that are not already factored.
\frac{-\left(a+4\right)\left(a-4\right)^{2}\left(-a^{2}+4a-16\right)}{9\left(a-4\right)\left(a+4\right)\left(-a^{2}+4a-16\right)}
Extract the negative sign in a^{2}-4a+16.
\frac{-\left(a-4\right)}{9}
Cancel out \left(a-4\right)\left(a+4\right)\left(-a^{2}+4a-16\right) in both numerator and denominator.
\frac{-a+4}{9}
Expand the expression.
\frac{a^{2}-4a+16}{a^{2}-16}\times \frac{a^{3}-4a^{2}-16a+64}{-9a^{2}+36a-144}
Use the distributive property to multiply a+4 by a^{2}-8a+16 and combine like terms.
\frac{\left(a^{2}-4a+16\right)\left(a^{3}-4a^{2}-16a+64\right)}{\left(a^{2}-16\right)\left(-9a^{2}+36a-144\right)}
Multiply \frac{a^{2}-4a+16}{a^{2}-16} times \frac{a^{3}-4a^{2}-16a+64}{-9a^{2}+36a-144} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a+4\right)\left(a-4\right)^{2}\left(a^{2}-4a+16\right)}{9\left(a-4\right)\left(a+4\right)\left(-a^{2}+4a-16\right)}
Factor the expressions that are not already factored.
\frac{-\left(a+4\right)\left(a-4\right)^{2}\left(-a^{2}+4a-16\right)}{9\left(a-4\right)\left(a+4\right)\left(-a^{2}+4a-16\right)}
Extract the negative sign in a^{2}-4a+16.
\frac{-\left(a-4\right)}{9}
Cancel out \left(a-4\right)\left(a+4\right)\left(-a^{2}+4a-16\right) in both numerator and denominator.
\frac{-a+4}{9}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}