Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(a^{2}-4\right)\left(a+4\right)}{\left(a^{2}+4a\right)\left(a^{2}-2a\right)}
Divide \frac{a^{2}-4}{a^{2}+4a} by \frac{a^{2}-2a}{a+4} by multiplying \frac{a^{2}-4}{a^{2}+4a} by the reciprocal of \frac{a^{2}-2a}{a+4}.
\frac{\left(a-2\right)\left(a+2\right)\left(a+4\right)}{\left(a-2\right)\left(a+4\right)a^{2}}
Factor the expressions that are not already factored.
\frac{a+2}{a^{2}}
Cancel out \left(a-2\right)\left(a+4\right) in both numerator and denominator.
\frac{\left(a^{2}-4\right)\left(a+4\right)}{\left(a^{2}+4a\right)\left(a^{2}-2a\right)}
Divide \frac{a^{2}-4}{a^{2}+4a} by \frac{a^{2}-2a}{a+4} by multiplying \frac{a^{2}-4}{a^{2}+4a} by the reciprocal of \frac{a^{2}-2a}{a+4}.
\frac{\left(a-2\right)\left(a+2\right)\left(a+4\right)}{\left(a-2\right)\left(a+4\right)a^{2}}
Factor the expressions that are not already factored.
\frac{a+2}{a^{2}}
Cancel out \left(a-2\right)\left(a+4\right) in both numerator and denominator.