Solve for a
a=-2
Share
Copied to clipboard
2\left(a^{2}-4\right)-\left(2a+3\right)a=4a+6
Variable a cannot be equal to -\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by 2\left(2a+3\right)^{2}, the least common multiple of 4a^{2}+12a+9,4a+6,2a+3.
2a^{2}-8-\left(2a+3\right)a=4a+6
Use the distributive property to multiply 2 by a^{2}-4.
2a^{2}-8-\left(2a^{2}+3a\right)=4a+6
Use the distributive property to multiply 2a+3 by a.
2a^{2}-8-2a^{2}-3a=4a+6
To find the opposite of 2a^{2}+3a, find the opposite of each term.
-8-3a=4a+6
Combine 2a^{2} and -2a^{2} to get 0.
-8-3a-4a=6
Subtract 4a from both sides.
-8-7a=6
Combine -3a and -4a to get -7a.
-7a=6+8
Add 8 to both sides.
-7a=14
Add 6 and 8 to get 14.
a=\frac{14}{-7}
Divide both sides by -7.
a=-2
Divide 14 by -7 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}