Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{a^{2}-3}{2a-2\sqrt{3}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{\left(a^{2}-3\right)\left(2a+2\sqrt{3}\right)}{\left(2a-2\sqrt{3}\right)\left(2a+2\sqrt{3}\right)}
Rationalize the denominator of \frac{a^{2}-3}{2a-2\sqrt{3}} by multiplying numerator and denominator by 2a+2\sqrt{3}.
\frac{\left(a^{2}-3\right)\left(2a+2\sqrt{3}\right)}{\left(2a\right)^{2}-\left(-2\sqrt{3}\right)^{2}}
Consider \left(2a-2\sqrt{3}\right)\left(2a+2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(a^{2}-3\right)\left(2a+2\sqrt{3}\right)}{2^{2}a^{2}-\left(-2\sqrt{3}\right)^{2}}
Expand \left(2a\right)^{2}.
\frac{\left(a^{2}-3\right)\left(2a+2\sqrt{3}\right)}{4a^{2}-\left(-2\sqrt{3}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(a^{2}-3\right)\left(2a+2\sqrt{3}\right)}{4a^{2}-\left(-2\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-2\sqrt{3}\right)^{2}.
\frac{\left(a^{2}-3\right)\left(2a+2\sqrt{3}\right)}{4a^{2}-4\left(\sqrt{3}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{\left(a^{2}-3\right)\left(2a+2\sqrt{3}\right)}{4a^{2}-4\times 3}
The square of \sqrt{3} is 3.
\frac{\left(a^{2}-3\right)\left(2a+2\sqrt{3}\right)}{4a^{2}-12}
Multiply 4 and 3 to get 12.
\frac{2\left(a+\sqrt{3}\right)\left(a^{2}-3\right)}{4\left(a^{2}-3\right)}
Factor the expressions that are not already factored.
\frac{a+\sqrt{3}}{2}
Cancel out 2\left(a^{2}-3\right) in both numerator and denominator.