Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{a^{2}\times 2^{3}c^{-2}}{\left(\frac{a}{-1}\right)^{-6}}-2\times \left(\frac{c}{\left(a^{2}\times 2^{-1}\right)^{2}}\right)^{-2}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{a^{2}\times 8c^{-2}}{\left(\frac{a}{-1}\right)^{-6}}-2\times \left(\frac{c}{\left(a^{2}\times 2^{-1}\right)^{2}}\right)^{-2}
Calculate 2 to the power of 3 and get 8.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \left(\frac{c}{\left(a^{2}\times 2^{-1}\right)^{2}}\right)^{-2}
Anything divided by -1 gives its opposite.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \left(\frac{c}{\left(a^{2}\times \frac{1}{2}\right)^{2}}\right)^{-2}
Calculate 2 to the power of -1 and get \frac{1}{2}.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \left(\frac{c}{\left(a^{2}\right)^{2}\times \left(\frac{1}{2}\right)^{2}}\right)^{-2}
Expand \left(a^{2}\times \frac{1}{2}\right)^{2}.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \left(\frac{c}{a^{4}\times \left(\frac{1}{2}\right)^{2}}\right)^{-2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \left(\frac{c}{a^{4}\times \frac{1}{4}}\right)^{-2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \frac{c^{-2}}{\left(a^{4}\times \frac{1}{4}\right)^{-2}}
To raise \frac{c}{a^{4}\times \frac{1}{4}} to a power, raise both numerator and denominator to the power and then divide.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \frac{c^{-2}}{\left(a^{4}\right)^{-2}\times \left(\frac{1}{4}\right)^{-2}}
Expand \left(a^{4}\times \frac{1}{4}\right)^{-2}.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \frac{c^{-2}}{a^{-8}\times \left(\frac{1}{4}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 4 and -2 to get -8.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \frac{c^{-2}}{a^{-8}\times 16}
Calculate \frac{1}{4} to the power of -2 and get 16.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-\frac{2c^{-2}}{a^{-8}\times 16}
Express 2\times \frac{c^{-2}}{a^{-8}\times 16} as a single fraction.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-\frac{c^{-2}}{8a^{-8}}
Cancel out 2 in both numerator and denominator.
\frac{a^{2}\times 8c^{-2}}{\left(-1\right)^{-6}a^{-6}}-\frac{c^{-2}}{8a^{-8}}
Expand \left(-a\right)^{-6}.
\frac{a^{2}\times 8c^{-2}}{1a^{-6}}-\frac{c^{-2}}{8a^{-8}}
Calculate -1 to the power of -6 and get 1.
8c^{-2}a^{8}-\frac{c^{-2}}{8a^{-8}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{8c^{-2}a^{8}\times 8a^{-8}}{8a^{-8}}-\frac{c^{-2}}{8a^{-8}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 8c^{-2}a^{8} times \frac{8a^{-8}}{8a^{-8}}.
\frac{8c^{-2}a^{8}\times 8a^{-8}-c^{-2}}{8a^{-8}}
Since \frac{8c^{-2}a^{8}\times 8a^{-8}}{8a^{-8}} and \frac{c^{-2}}{8a^{-8}} have the same denominator, subtract them by subtracting their numerators.
\frac{64c^{-2}-c^{-2}}{8a^{-8}}
Do the multiplications in 8c^{-2}a^{8}\times 8a^{-8}-c^{-2}.
\frac{63c^{-2}}{8a^{-8}}
Combine like terms in 64c^{-2}-c^{-2}.
\frac{a^{2}\times 2^{3}c^{-2}}{\left(\frac{a}{-1}\right)^{-6}}-2\times \left(\frac{c}{\left(a^{2}\times 2^{-1}\right)^{2}}\right)^{-2}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{a^{2}\times 8c^{-2}}{\left(\frac{a}{-1}\right)^{-6}}-2\times \left(\frac{c}{\left(a^{2}\times 2^{-1}\right)^{2}}\right)^{-2}
Calculate 2 to the power of 3 and get 8.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \left(\frac{c}{\left(a^{2}\times 2^{-1}\right)^{2}}\right)^{-2}
Anything divided by -1 gives its opposite.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \left(\frac{c}{\left(a^{2}\times \frac{1}{2}\right)^{2}}\right)^{-2}
Calculate 2 to the power of -1 and get \frac{1}{2}.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \left(\frac{c}{\left(a^{2}\right)^{2}\times \left(\frac{1}{2}\right)^{2}}\right)^{-2}
Expand \left(a^{2}\times \frac{1}{2}\right)^{2}.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \left(\frac{c}{a^{4}\times \left(\frac{1}{2}\right)^{2}}\right)^{-2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \left(\frac{c}{a^{4}\times \frac{1}{4}}\right)^{-2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \frac{c^{-2}}{\left(a^{4}\times \frac{1}{4}\right)^{-2}}
To raise \frac{c}{a^{4}\times \frac{1}{4}} to a power, raise both numerator and denominator to the power and then divide.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \frac{c^{-2}}{\left(a^{4}\right)^{-2}\times \left(\frac{1}{4}\right)^{-2}}
Expand \left(a^{4}\times \frac{1}{4}\right)^{-2}.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \frac{c^{-2}}{a^{-8}\times \left(\frac{1}{4}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 4 and -2 to get -8.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-2\times \frac{c^{-2}}{a^{-8}\times 16}
Calculate \frac{1}{4} to the power of -2 and get 16.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-\frac{2c^{-2}}{a^{-8}\times 16}
Express 2\times \frac{c^{-2}}{a^{-8}\times 16} as a single fraction.
\frac{a^{2}\times 8c^{-2}}{\left(-a\right)^{-6}}-\frac{c^{-2}}{8a^{-8}}
Cancel out 2 in both numerator and denominator.
\frac{a^{2}\times 8c^{-2}}{\left(-1\right)^{-6}a^{-6}}-\frac{c^{-2}}{8a^{-8}}
Expand \left(-a\right)^{-6}.
\frac{a^{2}\times 8c^{-2}}{1a^{-6}}-\frac{c^{-2}}{8a^{-8}}
Calculate -1 to the power of -6 and get 1.
8c^{-2}a^{8}-\frac{c^{-2}}{8a^{-8}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{8c^{-2}a^{8}\times 8a^{-8}}{8a^{-8}}-\frac{c^{-2}}{8a^{-8}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 8c^{-2}a^{8} times \frac{8a^{-8}}{8a^{-8}}.
\frac{8c^{-2}a^{8}\times 8a^{-8}-c^{-2}}{8a^{-8}}
Since \frac{8c^{-2}a^{8}\times 8a^{-8}}{8a^{-8}} and \frac{c^{-2}}{8a^{-8}} have the same denominator, subtract them by subtracting their numerators.
\frac{64c^{-2}-c^{-2}}{8a^{-8}}
Do the multiplications in 8c^{-2}a^{8}\times 8a^{-8}-c^{-2}.
\frac{63c^{-2}}{8a^{-8}}
Combine like terms in 64c^{-2}-c^{-2}.