Evaluate
\frac{a^{6}}{\left(bc\right)^{4}}
Differentiate w.r.t. a
\frac{6a^{5}}{\left(bc\right)^{4}}
Share
Copied to clipboard
\frac{\frac{a^{2}}{bc^{2}}}{\frac{bcb^{2}c}{a^{2}a^{2}}}
Multiply \frac{bc}{a^{2}} times \frac{b^{2}c}{a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{a^{2}a^{2}a^{2}}{bc^{2}bcb^{2}c}
Divide \frac{a^{2}}{bc^{2}} by \frac{bcb^{2}c}{a^{2}a^{2}} by multiplying \frac{a^{2}}{bc^{2}} by the reciprocal of \frac{bcb^{2}c}{a^{2}a^{2}}.
\frac{a^{4}a^{2}}{bc^{2}bcb^{2}c}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{a^{6}}{bc^{2}bcb^{2}c}
To multiply powers of the same base, add their exponents. Add 4 and 2 to get 6.
\frac{a^{6}}{b^{2}c^{2}cb^{2}c}
Multiply b and b to get b^{2}.
\frac{a^{6}}{b^{4}c^{2}cc}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{a^{6}}{b^{4}c^{3}c}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{a^{6}}{b^{4}c^{4}}
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}