Evaluate
a^{2}+4
Expand
a^{2}+4
Share
Copied to clipboard
\frac{a^{2}}{a^{2}+4a+4}\times \frac{8\left(a-2\right)\left(a+2\right)}{\left(a-2\right)a^{2}}+\frac{\frac{a^{5}-8a^{2}}{a}}{a^{2}-4}
Factor the expressions that are not already factored in \frac{8a^{2}-32}{a^{3}-2a^{2}}.
\frac{a^{2}}{a^{2}+4a+4}\times \frac{8\left(a+2\right)}{a^{2}}+\frac{\frac{a^{5}-8a^{2}}{a}}{a^{2}-4}
Cancel out a-2 in both numerator and denominator.
\frac{a^{2}\times 8\left(a+2\right)}{\left(a^{2}+4a+4\right)a^{2}}+\frac{\frac{a^{5}-8a^{2}}{a}}{a^{2}-4}
Multiply \frac{a^{2}}{a^{2}+4a+4} times \frac{8\left(a+2\right)}{a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{8\left(a+2\right)}{a^{2}+4a+4}+\frac{\frac{a^{5}-8a^{2}}{a}}{a^{2}-4}
Cancel out a^{2} in both numerator and denominator.
\frac{8\left(a+2\right)}{a^{2}+4a+4}+\frac{a^{5}-8a^{2}}{a\left(a^{2}-4\right)}
Express \frac{\frac{a^{5}-8a^{2}}{a}}{a^{2}-4} as a single fraction.
\frac{8\left(a+2\right)}{a^{2}+4a+4}+\frac{\left(a-2\right)a^{2}\left(a^{2}+2a+4\right)}{a\left(a-2\right)\left(a+2\right)}
Factor the expressions that are not already factored in \frac{a^{5}-8a^{2}}{a\left(a^{2}-4\right)}.
\frac{8\left(a+2\right)}{a^{2}+4a+4}+\frac{a\left(a^{2}+2a+4\right)}{a+2}
Cancel out a\left(a-2\right) in both numerator and denominator.
\frac{8\left(a+2\right)}{\left(a+2\right)^{2}}+\frac{a\left(a^{2}+2a+4\right)}{a+2}
Factor a^{2}+4a+4.
\frac{8\left(a+2\right)}{\left(a+2\right)^{2}}+\frac{a\left(a^{2}+2a+4\right)\left(a+2\right)}{\left(a+2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+2\right)^{2} and a+2 is \left(a+2\right)^{2}. Multiply \frac{a\left(a^{2}+2a+4\right)}{a+2} times \frac{a+2}{a+2}.
\frac{8\left(a+2\right)+a\left(a^{2}+2a+4\right)\left(a+2\right)}{\left(a+2\right)^{2}}
Since \frac{8\left(a+2\right)}{\left(a+2\right)^{2}} and \frac{a\left(a^{2}+2a+4\right)\left(a+2\right)}{\left(a+2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{8a+16+a^{4}+2a^{3}+2a^{3}+4a^{2}+4a^{2}+8a}{\left(a+2\right)^{2}}
Do the multiplications in 8\left(a+2\right)+a\left(a^{2}+2a+4\right)\left(a+2\right).
\frac{16a+16+a^{4}+4a^{3}+8a^{2}}{\left(a+2\right)^{2}}
Combine like terms in 8a+16+a^{4}+2a^{3}+2a^{3}+4a^{2}+4a^{2}+8a.
\frac{\left(a+2\right)^{2}\left(a^{2}+4\right)}{\left(a+2\right)^{2}}
Factor the expressions that are not already factored in \frac{16a+16+a^{4}+4a^{3}+8a^{2}}{\left(a+2\right)^{2}}.
a^{2}+4
Cancel out \left(a+2\right)^{2} in both numerator and denominator.
\frac{a^{2}}{a^{2}+4a+4}\times \frac{8\left(a-2\right)\left(a+2\right)}{\left(a-2\right)a^{2}}+\frac{\frac{a^{5}-8a^{2}}{a}}{a^{2}-4}
Factor the expressions that are not already factored in \frac{8a^{2}-32}{a^{3}-2a^{2}}.
\frac{a^{2}}{a^{2}+4a+4}\times \frac{8\left(a+2\right)}{a^{2}}+\frac{\frac{a^{5}-8a^{2}}{a}}{a^{2}-4}
Cancel out a-2 in both numerator and denominator.
\frac{a^{2}\times 8\left(a+2\right)}{\left(a^{2}+4a+4\right)a^{2}}+\frac{\frac{a^{5}-8a^{2}}{a}}{a^{2}-4}
Multiply \frac{a^{2}}{a^{2}+4a+4} times \frac{8\left(a+2\right)}{a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{8\left(a+2\right)}{a^{2}+4a+4}+\frac{\frac{a^{5}-8a^{2}}{a}}{a^{2}-4}
Cancel out a^{2} in both numerator and denominator.
\frac{8\left(a+2\right)}{a^{2}+4a+4}+\frac{a^{5}-8a^{2}}{a\left(a^{2}-4\right)}
Express \frac{\frac{a^{5}-8a^{2}}{a}}{a^{2}-4} as a single fraction.
\frac{8\left(a+2\right)}{a^{2}+4a+4}+\frac{\left(a-2\right)a^{2}\left(a^{2}+2a+4\right)}{a\left(a-2\right)\left(a+2\right)}
Factor the expressions that are not already factored in \frac{a^{5}-8a^{2}}{a\left(a^{2}-4\right)}.
\frac{8\left(a+2\right)}{a^{2}+4a+4}+\frac{a\left(a^{2}+2a+4\right)}{a+2}
Cancel out a\left(a-2\right) in both numerator and denominator.
\frac{8\left(a+2\right)}{\left(a+2\right)^{2}}+\frac{a\left(a^{2}+2a+4\right)}{a+2}
Factor a^{2}+4a+4.
\frac{8\left(a+2\right)}{\left(a+2\right)^{2}}+\frac{a\left(a^{2}+2a+4\right)\left(a+2\right)}{\left(a+2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+2\right)^{2} and a+2 is \left(a+2\right)^{2}. Multiply \frac{a\left(a^{2}+2a+4\right)}{a+2} times \frac{a+2}{a+2}.
\frac{8\left(a+2\right)+a\left(a^{2}+2a+4\right)\left(a+2\right)}{\left(a+2\right)^{2}}
Since \frac{8\left(a+2\right)}{\left(a+2\right)^{2}} and \frac{a\left(a^{2}+2a+4\right)\left(a+2\right)}{\left(a+2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{8a+16+a^{4}+2a^{3}+2a^{3}+4a^{2}+4a^{2}+8a}{\left(a+2\right)^{2}}
Do the multiplications in 8\left(a+2\right)+a\left(a^{2}+2a+4\right)\left(a+2\right).
\frac{16a+16+a^{4}+4a^{3}+8a^{2}}{\left(a+2\right)^{2}}
Combine like terms in 8a+16+a^{4}+2a^{3}+2a^{3}+4a^{2}+4a^{2}+8a.
\frac{\left(a+2\right)^{2}\left(a^{2}+4\right)}{\left(a+2\right)^{2}}
Factor the expressions that are not already factored in \frac{16a+16+a^{4}+4a^{3}+8a^{2}}{\left(a+2\right)^{2}}.
a^{2}+4
Cancel out \left(a+2\right)^{2} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}