Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

\frac{a^{2}}{a^{2}+4a+4}\times \frac{8\left(a-2\right)\left(a+2\right)}{\left(a-2\right)a^{2}}+\frac{\frac{a^{5}-8a^{2}}{a}}{a^{2}-4}
Factor the expressions that are not already factored in \frac{8a^{2}-32}{a^{3}-2a^{2}}.
\frac{a^{2}}{a^{2}+4a+4}\times \frac{8\left(a+2\right)}{a^{2}}+\frac{\frac{a^{5}-8a^{2}}{a}}{a^{2}-4}
Cancel out a-2 in both numerator and denominator.
\frac{a^{2}\times 8\left(a+2\right)}{\left(a^{2}+4a+4\right)a^{2}}+\frac{\frac{a^{5}-8a^{2}}{a}}{a^{2}-4}
Multiply \frac{a^{2}}{a^{2}+4a+4} times \frac{8\left(a+2\right)}{a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{8\left(a+2\right)}{a^{2}+4a+4}+\frac{\frac{a^{5}-8a^{2}}{a}}{a^{2}-4}
Cancel out a^{2} in both numerator and denominator.
\frac{8\left(a+2\right)}{a^{2}+4a+4}+\frac{a^{5}-8a^{2}}{a\left(a^{2}-4\right)}
Express \frac{\frac{a^{5}-8a^{2}}{a}}{a^{2}-4} as a single fraction.
\frac{8\left(a+2\right)}{a^{2}+4a+4}+\frac{\left(a-2\right)a^{2}\left(a^{2}+2a+4\right)}{a\left(a-2\right)\left(a+2\right)}
Factor the expressions that are not already factored in \frac{a^{5}-8a^{2}}{a\left(a^{2}-4\right)}.
\frac{8\left(a+2\right)}{a^{2}+4a+4}+\frac{a\left(a^{2}+2a+4\right)}{a+2}
Cancel out a\left(a-2\right) in both numerator and denominator.
\frac{8\left(a+2\right)}{\left(a+2\right)^{2}}+\frac{a\left(a^{2}+2a+4\right)}{a+2}
Factor a^{2}+4a+4.
\frac{8\left(a+2\right)}{\left(a+2\right)^{2}}+\frac{a\left(a^{2}+2a+4\right)\left(a+2\right)}{\left(a+2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+2\right)^{2} and a+2 is \left(a+2\right)^{2}. Multiply \frac{a\left(a^{2}+2a+4\right)}{a+2} times \frac{a+2}{a+2}.
\frac{8\left(a+2\right)+a\left(a^{2}+2a+4\right)\left(a+2\right)}{\left(a+2\right)^{2}}
Since \frac{8\left(a+2\right)}{\left(a+2\right)^{2}} and \frac{a\left(a^{2}+2a+4\right)\left(a+2\right)}{\left(a+2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{8a+16+a^{4}+2a^{3}+2a^{3}+4a^{2}+4a^{2}+8a}{\left(a+2\right)^{2}}
Do the multiplications in 8\left(a+2\right)+a\left(a^{2}+2a+4\right)\left(a+2\right).
\frac{16a+16+a^{4}+4a^{3}+8a^{2}}{\left(a+2\right)^{2}}
Combine like terms in 8a+16+a^{4}+2a^{3}+2a^{3}+4a^{2}+4a^{2}+8a.
\frac{\left(a+2\right)^{2}\left(a^{2}+4\right)}{\left(a+2\right)^{2}}
Factor the expressions that are not already factored in \frac{16a+16+a^{4}+4a^{3}+8a^{2}}{\left(a+2\right)^{2}}.
a^{2}+4
Cancel out \left(a+2\right)^{2} in both numerator and denominator.
\frac{a^{2}}{a^{2}+4a+4}\times \frac{8\left(a-2\right)\left(a+2\right)}{\left(a-2\right)a^{2}}+\frac{\frac{a^{5}-8a^{2}}{a}}{a^{2}-4}
Factor the expressions that are not already factored in \frac{8a^{2}-32}{a^{3}-2a^{2}}.
\frac{a^{2}}{a^{2}+4a+4}\times \frac{8\left(a+2\right)}{a^{2}}+\frac{\frac{a^{5}-8a^{2}}{a}}{a^{2}-4}
Cancel out a-2 in both numerator and denominator.
\frac{a^{2}\times 8\left(a+2\right)}{\left(a^{2}+4a+4\right)a^{2}}+\frac{\frac{a^{5}-8a^{2}}{a}}{a^{2}-4}
Multiply \frac{a^{2}}{a^{2}+4a+4} times \frac{8\left(a+2\right)}{a^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{8\left(a+2\right)}{a^{2}+4a+4}+\frac{\frac{a^{5}-8a^{2}}{a}}{a^{2}-4}
Cancel out a^{2} in both numerator and denominator.
\frac{8\left(a+2\right)}{a^{2}+4a+4}+\frac{a^{5}-8a^{2}}{a\left(a^{2}-4\right)}
Express \frac{\frac{a^{5}-8a^{2}}{a}}{a^{2}-4} as a single fraction.
\frac{8\left(a+2\right)}{a^{2}+4a+4}+\frac{\left(a-2\right)a^{2}\left(a^{2}+2a+4\right)}{a\left(a-2\right)\left(a+2\right)}
Factor the expressions that are not already factored in \frac{a^{5}-8a^{2}}{a\left(a^{2}-4\right)}.
\frac{8\left(a+2\right)}{a^{2}+4a+4}+\frac{a\left(a^{2}+2a+4\right)}{a+2}
Cancel out a\left(a-2\right) in both numerator and denominator.
\frac{8\left(a+2\right)}{\left(a+2\right)^{2}}+\frac{a\left(a^{2}+2a+4\right)}{a+2}
Factor a^{2}+4a+4.
\frac{8\left(a+2\right)}{\left(a+2\right)^{2}}+\frac{a\left(a^{2}+2a+4\right)\left(a+2\right)}{\left(a+2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+2\right)^{2} and a+2 is \left(a+2\right)^{2}. Multiply \frac{a\left(a^{2}+2a+4\right)}{a+2} times \frac{a+2}{a+2}.
\frac{8\left(a+2\right)+a\left(a^{2}+2a+4\right)\left(a+2\right)}{\left(a+2\right)^{2}}
Since \frac{8\left(a+2\right)}{\left(a+2\right)^{2}} and \frac{a\left(a^{2}+2a+4\right)\left(a+2\right)}{\left(a+2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{8a+16+a^{4}+2a^{3}+2a^{3}+4a^{2}+4a^{2}+8a}{\left(a+2\right)^{2}}
Do the multiplications in 8\left(a+2\right)+a\left(a^{2}+2a+4\right)\left(a+2\right).
\frac{16a+16+a^{4}+4a^{3}+8a^{2}}{\left(a+2\right)^{2}}
Combine like terms in 8a+16+a^{4}+2a^{3}+2a^{3}+4a^{2}+4a^{2}+8a.
\frac{\left(a+2\right)^{2}\left(a^{2}+4\right)}{\left(a+2\right)^{2}}
Factor the expressions that are not already factored in \frac{16a+16+a^{4}+4a^{3}+8a^{2}}{\left(a+2\right)^{2}}.
a^{2}+4
Cancel out \left(a+2\right)^{2} in both numerator and denominator.