Evaluate
-\frac{x^{6}}{25}+\frac{a^{2}}{36}
Factor
\frac{\left(5a-6x^{3}\right)\left(6x^{3}+5a\right)}{900}
Graph
Share
Copied to clipboard
\frac{25a^{2}}{900}-\frac{36x^{6}}{900}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 36 and 25 is 900. Multiply \frac{a^{2}}{36} times \frac{25}{25}. Multiply \frac{x^{6}}{25} times \frac{36}{36}.
\frac{25a^{2}-36x^{6}}{900}
Since \frac{25a^{2}}{900} and \frac{36x^{6}}{900} have the same denominator, subtract them by subtracting their numerators.
\frac{25a^{2}-36x^{6}}{900}
Factor out \frac{1}{900}.
\left(5a-6x^{3}\right)\left(5a+6x^{3}\right)
Consider 25a^{2}-36x^{6}. Rewrite 25a^{2}-36x^{6} as \left(5a\right)^{2}-\left(6x^{3}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(-6x^{3}+5a\right)\left(6x^{3}+5a\right)
Reorder the terms.
\frac{\left(-6x^{3}+5a\right)\left(6x^{3}+5a\right)}{900}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}