Evaluate
\frac{\left(4a-5b\right)^{2}}{400}
Factor
\frac{\left(4a-5b\right)^{2}}{400}
Share
Copied to clipboard
\frac{16a^{2}}{400}+\frac{25b^{2}}{400}-\frac{ab}{10}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 25 and 16 is 400. Multiply \frac{a^{2}}{25} times \frac{16}{16}. Multiply \frac{b^{2}}{16} times \frac{25}{25}.
\frac{16a^{2}+25b^{2}}{400}-\frac{ab}{10}
Since \frac{16a^{2}}{400} and \frac{25b^{2}}{400} have the same denominator, add them by adding their numerators.
\frac{16a^{2}+25b^{2}}{400}-\frac{40ab}{400}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 400 and 10 is 400. Multiply \frac{ab}{10} times \frac{40}{40}.
\frac{16a^{2}+25b^{2}-40ab}{400}
Since \frac{16a^{2}+25b^{2}}{400} and \frac{40ab}{400} have the same denominator, subtract them by subtracting their numerators.
\frac{16a^{2}+25b^{2}-40ab}{400}
Factor out \frac{1}{400}.
\left(4a-5b\right)^{2}
Consider 16a^{2}+25b^{2}-40ab. Use the perfect square formula, p^{2}-2pq+q^{2}=\left(p-q\right)^{2}, where p=4a and q=5b.
\frac{\left(4a-5b\right)^{2}}{400}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}