Factor
\frac{\left(12a-55b\right)\left(12a+55b\right)}{17424}
Evaluate
\frac{a^{2}}{121}-\frac{25b^{2}}{144}
Share
Copied to clipboard
\frac{144a^{2}-3025b^{2}}{17424}
Factor out \frac{1}{17424}.
\left(12a-55b\right)\left(12a+55b\right)
Consider 144a^{2}-3025b^{2}. Rewrite 144a^{2}-3025b^{2} as \left(12a\right)^{2}-\left(55b\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\frac{\left(12a-55b\right)\left(12a+55b\right)}{17424}
Rewrite the complete factored expression.
\frac{144a^{2}}{17424}-\frac{121\times 25b^{2}}{17424}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 121 and 144 is 17424. Multiply \frac{a^{2}}{121} times \frac{144}{144}. Multiply \frac{25b^{2}}{144} times \frac{121}{121}.
\frac{144a^{2}-121\times 25b^{2}}{17424}
Since \frac{144a^{2}}{17424} and \frac{121\times 25b^{2}}{17424} have the same denominator, subtract them by subtracting their numerators.
\frac{144a^{2}-3025b^{2}}{17424}
Do the multiplications in 144a^{2}-121\times 25b^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}