Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{144a^{2}-3025b^{2}}{17424}
Factor out \frac{1}{17424}.
\left(12a-55b\right)\left(12a+55b\right)
Consider 144a^{2}-3025b^{2}. Rewrite 144a^{2}-3025b^{2} as \left(12a\right)^{2}-\left(55b\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\frac{\left(12a-55b\right)\left(12a+55b\right)}{17424}
Rewrite the complete factored expression.
\frac{144a^{2}}{17424}-\frac{121\times 25b^{2}}{17424}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 121 and 144 is 17424. Multiply \frac{a^{2}}{121} times \frac{144}{144}. Multiply \frac{25b^{2}}{144} times \frac{121}{121}.
\frac{144a^{2}-121\times 25b^{2}}{17424}
Since \frac{144a^{2}}{17424} and \frac{121\times 25b^{2}}{17424} have the same denominator, subtract them by subtracting their numerators.
\frac{144a^{2}-3025b^{2}}{17424}
Do the multiplications in 144a^{2}-121\times 25b^{2}.